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Abstract

Information access systems are increasingly shifting toward conversational in-
teractions. Conversational information-seeking (CIS) systems have traditionally
focused on passage retrieval, reranking, and query rewriting. However, synthe-
sizing retrieved information into coherent, well-grounded responses remains a
significant challenge. This thesis explores response generation in CIS, address-
ing key issues such as factual grounding, completeness, and transparency.

We investigate key aspects of response generation, including (1) synthesiz-
ing the requested information, (2) grounding it in specific facts identified in the
passages, (3) estimating response completeness, and (4) revealing the system’s
limitations. To this end, we propose a modular response generation pipeline,
which leverages retrieval-augmented generation and operates on fine-grained
information nuggets—minimal, atomic units of relevant information. Our ap-
proach ensures factual correctness, facilitates source attribution, and improves
response completeness while proactively suggesting follow-up questions.

To further improve response reliability, we introduce techniques for detect-
ing system limitations, including identifying unanswerable questions to mitigate
hallucinations. We also study how system transparency regarding the sources,
system’s confidence, and potential response limitations affects the user experi-
ence, demonstrating the importance of enhancing the response with additional
information, thereby enabling its critical assessment by users.

By addressing these challenges, our research contributes to the advancement
of CIS response generation, fostering more reliable, transparent, and user-centric
interactions in information-seeking dialogues. By integrating mechanisms for
unanswerable question detection, revealing response completeness, and explic-
itly communicating response limitations, we aim to mitigate misinformation,
foster trust, and empower users to make informed judgments. Our findings pro-
vide valuable insights for future research on explainable CIS systems, paving
the way for more transparent and effective user-system interactions.
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Chapter 1

Introduction

Science, my lad, is made up of mistakes, but
they are mistakes which it is useful to make,
because they lead little by little to the truth.

— Jules Verne

Recently, many information access systems have transitioned to a conver-
sational mode, enabling more dynamic and user-friendly interactions. Chat-
bots now provide real-time assistance for tasks like booking flights, managing
purchases, or addressing banking queries. Voice assistants offer informed an-
swers, personalized recommendations, and hands-free convenience while driving
or when typing is not possible. Modern conversational assistants are able to
handle complex interactions, support decision-making, answer complex ques-
tions, and execute specific requests. They can maintain context over extended
exchanges, incorporate user feedback, proactively suggest actions, and adapt to
ongoing interactions. With these advanced capabilities, conversational systems
are becoming a preferred choice for many users and remain a very active area
of research.

The shift toward conversational interactions is also transforming search sys-
tems, which are the focus of this thesis. Traditional search systems retrieve
documents relevant to a user’s query and present them as a ranked list (see Fig-
ure 1.1). Retrieval can also be performed at a more granular level, by identifying
specific passages within documents. However, identifying the passages that are
most relevant to a user’s query in a document corpus is only a preliminary step;
the ultimate goal of a conversational search system is to synthesize informa-

1
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Traditional Search
Engine

Conversational Search
System

Explainable Conversational
Search System

Figure 1.1: Different types of search systems including: (1) a traditional search
engine that returns a ranked list of documents, (2) a conversational search sys-
tem that generates a synthesized answer to the user’s query, and (3) an explain-
able system that enhances conversational responses with additional information,
such as source links, warnings about potential limitations, or estimations of re-
sponse completeness.

tion from these passages into a coherent, informative response–a process known
as conversational response generation (Ren et al., 2021) (see Figure 1.2). The
system’s response must effectively distill the most pertinent information into a
format that is both clear and easily digestible for the user (Culpepper et al.,
2018). In an ideal scenario, when the passages from the top of the ranking answer
the question, the task of response generation simplifies to summarization (Owoi-
cho et al., 2022). However, in the realm of conversational information-seeking
(CIS) dialogues, involving open-ended questions, indirect answers, and complex
queries with partial answers spread across multiple sources (Bolotova-Baranova
et al., 2023; Zamani et al., 2023; Gabburo et al., 2024), the assumption that
a user’s query can be fully answered by summarizing top-retrieved information
often falls short of reality.

While synthesizing retrieved information into conversational responses is cru-
cial for enhancing the user experience (Culpepper et al., 2018; Ren et al., 2021),
it presents challenges such as ensuring factual correctness (Ji et al., 2023; Koop-
man and Zuccon, 2023; Tang et al., 2023), source attribution (Rashkin et al.,
2021), information verifiability (Liu et al., 2023a), consistency, salience, and cov-
erage (Gienapp et al., 2024). When the answer is not fully contained within top
retrieved passages, summarizing them can lead to hallucinations (Tang et al.,
2023; Cao et al., 2016; Ji et al., 2023) or introduce bias by covering only one
point of view or a partial answer (Gao and Shah, 2020). Consequently, relying
solely on a summarization of the top retrieved passages risks providing users
with biased, incomplete, or incorrect responses (Tang et al., 2022). Generative
language models, while widely adopted for response generation (Zhang et al.,
2020b; Lewis et al., 2020), remain vulnerable to these limitations, further under-
scoring the need for more robust information synthesis methods in the context
of answering complex queries.
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Conversational
Response
Generation

Complete

Grounded

Reliable

Correct

Natural

External 
World 

Knowledge

User-related
Information 

Retrieved
Relevant 
Sources

Response to
User’s Query

Transparent

Figure 1.2: Conversational response generation, highlighting the key input com-
ponents and the expected characteristics of the system output. The tasks of (1)
personalizing responses based on user-specific information, and (2) enriching re-
sponses with external world knowledge beyond the retrieval corpus are included
for completeness, but they fall outside the scope of this thesis and are left for
future work.

The increasing reliance on digital information calls for transparent and trust-
worthy search systems in our daily interactions. In transitioning from traditional
search engine result pages to a conversational setting that limits responses to
a few sentences, there is a significant concealment of underlying details such as
specifics about the sources, the scope of the answer, and the extent to which
it is covered. These details are essential for users to assess the scope, novelty,
reliability, and topical relevance of the provided information (Xu and Chen,
2006). Since the user is provided only with a short textual response as the final
outcome of the generation process, it becomes the responsibility of the con-
versational system to identify and communicate any potential limitations to its
users, ensuring transparency and empowering users to evaluate response quality.
While the importance of explainability is broadly recognized for Artificial Intel-
ligence (AI) (Monroe, 2018) and has been extensively studied, for example, for
decision support and recommender systems (Nunes and Jannach, 2017; Zhang
and Chen, 2020), it has not received due attention for CIS systems.

Recognizing that users are responsible for assessing the completeness, credi-
bility, and accuracy of information provided by the system, it is crucial to equip
them with the necessary tools for objective evaluation. We identify three key
elements that are essential in this regard: (1) grounding the response in facts
retrieved from sources, (2) presenting these sources to users, and (3) ensuring
system transparency about the completeness of the provided information (see
Figure 1.3). Grounding the response in verifiable sources significantly enhances
system reliability and improves the quality of user interactions. Users with
limited knowledge of the topic may struggle to filter out inaccurate content,
especially as untrained individuals can only differentiate between human- and
machine-generated text with near-random accuracy (Clark et al., 2021). Source
attribution further aids users in verifying factuality, increasing the transparency
of the response generation process. For those unfamiliar with a subject, know-
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What was the US reaction to the Black Lives Matter movement?

Sources              Controversial topic, multiple   
             points of view possible!

  Response 
  completeness

The U.S. reaction to the Black Lives Matter movement has been
mixed. On one hand, there has been support for the movement's
goals of addressing police brutality and racial injustice. However,
there has also been criticism and pushback, leading to initiatives
like the "Blue Lives Matter" movement which is a response to
perceived anti-police rhetoric associated with Black Lives Matter. 

Figure 1.3: Information-seeking dialogue with a CIS system, including expla-
nations with links to the sources used for response synthesis, the completeness
estimation of the generated response, and a warning about potential limitations
of the returned answer.

ing the extent of the response’s coverage is crucial to deciding how to proceed
in their interactions with the system. This transparency helps users navigate
the search space and refine their information needs (Azzopardi et al., 2018). In
edge cases, system transparency should also extend to handling unanswerable
queries, as directly informing users about the system’s limitations is far more
reliable than providing vague or factually incorrect responses (Koopman and
Zuccon, 2023).

Generating responses that meet these criteria would empower users to inter-
pret information more critically and support their decision-making process. The
research presented in this thesis explores the complexities of response generation
in CIS systems, with a focus on ensuring grounding, completeness, transparency,
and factual accuracy.

1.1 Research Questions

The main objective motivating this work is building a CIS system capable of
generating transparent, factual, and grounded responses that enable users to
navigate complex information needs successfully (see Figure 1.4). To advance
research in these areas, we need a competitive baseline for both the retrieval
component, to collect the sources answering the user’s query, and the generation
component, to synthesize this information into a natural answer. This motivates
our first main research question:

RQ1: What are strong baselines for (a) passage retrieval and (b)
response generation in CIS systems?

Recognizing that high-performing retrieval does not guarantee that the gener-
ated responses are useful, we turn our focus to the factors that contribute to
response limitations. For example, highly relevant passages retrieved by the
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Figure 1.4: Overview of an explainable conversational response generation sys-
tem compared to the baseline CIS pipeline, along with the research questions
addressed in this thesis.

system may contain redundant information leading to low information density.
On the other hand, for rare topics, the system may not find relevant information
in the corpus, resulting in unaswerability that, if not handled properly, leads
to relying entirely on the model’s parametric memory and increases the risk of
hallucinations. Operating on information units of finer granularity than doc-
uments or passages enables us to investigate response coverage, accuracy, and
completeness. This leads us to the second main research question, along with
specific subquestions:

RQ2: What are the main limitations of CIS systems?

RQ2.1: Which limitations in the responses are detectable
by users?

RQ2.2: How to detect factors contributing to incorrect,
incomplete, or biased responses?

Having identified the main challenges of response generation in CIS systems, we
turn to addressing them by designing a system capable of generating transpar-
ent, grounded, and conversational responses. Providing users with transparent
responses that acknowledge the system’s limitations is paramount for fostering
trust and empowering users to make informed judgments. We aim to generate
responses that (1) synthesize the requested information, (2) are grounded in
specific facts identified in the passages, (3) articulate the system’s confidence,
and (4) reveal the system’s limitations. To accomplish that, we formulate the
following research questions:

RQ3: How to ensure transparent and explainable interactions with
responses grounded in attributed sources for users?

RQ3.1: How to identify core information units in the
relevant passages that need to be included in the response?

RQ3.2: How to ensure the grounding of responses in the
retrieved sources?
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RQ3.3: How to generate responses transparent about the
system’s confidence and limitations?

1.2 Main Contributions

This section summarizes the main methodological and empirical contributions
of this thesis, as well as the developed datasets that are made available to the
research community.

Methodological

• We design a data collection protocol for high-quality human annotation
of information nuggets in CIS dialogues (Chapter 5).

• We develop a baseline approach for predicting query answerability based
on the top retrieved passages (Chapter 5).

• We propose a framework for grounded response generation that ensures
source attribution and enables automatic manipulation of response com-
pleteness in terms of unique pieces of relevant information included in the
generated response (Chapter 6).

• We develop a methodology for evaluating the completeness of the response
in terms of ground-truth information nuggets covered in the generated text
(Chapter 6).

Empirical

• We investigate the reproducibility of two CIS systems developed for the
Conversational Assistance Track at Text REtrieval Conference (TREC
CAsT) (Chapter 3).

• We perform a user study investigating the impact of query answerability
and response incompleteness on user experience (Chapter 4).

• We conduct a user study investigating effective ways to provide explana-
tions to accompany responses generated by the system (Chapter 7).

Resources

• We build a high-quality dataset for conversational information seeking
containing snippet-level annotations (Chapter 5).

• We build a dataset for question answerability prediction with answerability
labels on the sentence, paragraph, and ranking levels (Chapter 5).
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1.3 Organization of the Thesis

This thesis is organized into two main parts preceded with a background chap-
ter that provides a comprehensive overview of related work in core areas of in-
formation access, natural language processing, evaluation techniques, and CIS
systems.

Part I presents a baseline CIS system by reproducing two state-of-the-art
systems from the TREC CAsT’22 track in Chapter 3. The goal of this chapter
is to lay a solid foundation for the exploration of CIS limitations. The impact
of query unanswerability and response incompleteness on user experience is
explored in Chapter 4.

Part II builds on these insights and introduces a novel dataset annotated
with information nuggets that serve as the atomic building blocks of answers.
The dataset is extended with answerability labels at multiple levels—sentence,
passage, and ranking—to provide a finer granularity assessment for answer verifi-
cation, and is used to develop a baseline model for detecting query answerability
based on the ranking of relevant passages in Chapter 5. Chapter 6 presents a re-
sponse generation pipeline that ensures grounding of the response in the sources,
enables control of the completeness of the response, and generates follow-up
questions that are both answerable and relevant, thus enhancing user engage-
ment and conversational continuity. Chapter 7 discusses the transparency of
CIS responses and explores different strategies of presenting explanations about
the sources, the system’s confidence in the response, and any potential response
limitations to the user.

The thesis concludes by revisiting the key findings and discussing their im-
plications for the future of transparent, reliable, and explainable conversational
information-seeking systems in Chapter 8. It synthesizes the contributions of
the work by revisiting the research questions and showing how they have been
addressed through the proposed methods. In this chapter, the limitations of
the current work are also acknowledged, and avenues for future research are
suggested. It ends with a reflection on the broader impact of this research in
the fields of information retrieval and human-computer interaction.

1.4 Origins of the Material

The content of this thesis is based on a number of papers. Some of these
have been published, while others are under review at the time of writing this
dissertation.

Introduction

P1. Łajewska (2024): Grounded and Transparent Response Gener-
ation for Conversational Information-Seeking Systems, WSDM ’24
[doctoral consortium]
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Part I: Understanding Limitations

P2. Łajewska et al. (2022): The University of Stavanger (IAI) at
the TREC 2022 Conversational Assistance Track, TREC ’22 [bench-
mark paper]

P3. Łajewska and Balog (2023a): From Baseline to Top Performer:
A Reproducibility Study of Approaches, ECIR ’23 [reproducibility
paper]

P4. Łajewska et al. (2024a): Can Users Detect Biases or Fac-
tual Errors in Generated Responses in Conversational Information-
Seeking?, SIGIR-AP ’24 [full paper]

Part II: Addressing Limitations

P5. Łajewska and Balog (2023b): Towards Filling the Gap in Con-
versational Search: From Passage Retrieval to Conversational Re-
sponse Generation, CIKM ’23 � [resource paper]

P6. Łajewska and Balog (2024a): Towards Reliable and Factual Re-
sponse Generation: Detecting Unanswerable Questions in Information-
seeking Conversations, ECIR ’24 � [short paper]

P7. Łajewska and Balog (2025): GINGER: Grounded Information
Nugget-Based Generation of Responses, SIGIR ’25 [short paper]

P8. Łajewska and Balog (2024b): The University of Stavanger (IAI)
at the TREC 2024 Retrieval-Augmented Generation Track, TREC
’24 [benchmark paper]

P9. Łajewska et al. (2024b): Explainability for Transparent Con-
versational Information-Seeking, SIGIR ’24 [full paper]

P10. Łajewska and Balog: X-GINGER: Explainable and Grounded
Conversational Response Generation [journal paper, submitted]

The following papers are not directly related to this thesis but brought insights
to working with conversational systems, user-related data and large language
models.

P11. Kostric et al. (2022): DAGFiNN: A Conversational Confer-
ence Assistant, RecSys ’22 [demonstration paper]

P12. Skjæveland et al. (2024): An Ecosystem for Personal Knowl-
edge Graphs: A Survey and Research Roadmap, AI Open, 2024 [jour-
nal paper]
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P13. Sekulić et al. (2024): Estimating the Usefulness of Clarifying
Questions and Answers for Conversational Search, ECIR ’24 [short
paper]

P14. Bernard et al. (2024): PKG API: A Tool for Personal Knowl-
edge Graph Management, WWW ’24 [short paper]

P15. Łajewska et al. (2025): Understanding and Improving Infor-
mation Preservation in Prompt Compression for LLMs [full paper,
under review]



Chapter 2

Background

What is now proved was once only imagined.

— William Blake

This chapter provides the theoretical and conceptual foundation necessary to
understand the motivation and implications of the work carried out in this the-
sis. It explores the broad landscape of information access systems and relevant
Natural Language Processing (NLP) tasks (see Figure 2.1), with a particular
focus on conversational search—the central theme of this research.

Information Access is concerned with the ability to efficiently identify, re-
trieve, and use relevant information. Information access systems are algorithmic
frameworks that bridge the gap between a collection of items (traditionally, doc-
uments) and a user’s information need. The fundamental challenge is: given an
item collection and a user’s information need, how can the system present the
most relevant items to meet that need? This information need, often a latent
and unobserved concept, can be inferred from explicit user inputs like keyword
queries or questions, as well as implicit data, such as previously consumed con-
tent or user behavior. As the user interacts with the system, their expression
of need evolves (Bates, 1989). The success of an information access system is
ultimately measured by the user’s satisfaction with the results. These systems
span several research areas, including information retrieval (IR), information fil-
tering, recommender systems, and specific applications of NLP (Ekstrand et al.,
2022).

The first section of this chapter (Section 2.1) traces the evolution of docu-
ment retrieval approaches, from classical document ranking techniques for key-

10



CHAPTER 2. BACKGROUND 11

Natural
Language
Processing

Information
Access

Explainability

Question
answering

Search

Text generation

RecSys
Classical IR

Conversational
agents

Chatbots

Large Language
Models

Text
Summarization

Information
Retrieval

Figure 2.1: An overview of the fields of Information Access, Information Re-
trieval, and Natural Language Processing.

word search to neural IR models for passage reranking, and concludes with a
discussion of common evaluation techniques, both human and automatic, in IR.
It also covers the foundations of text representation and natural language mod-
eling before we take a deep dive into their role in making users’ interactions with
the system more natural. Section 2.2 focuses on conversational search systems,
introducing the concept of search as a conversational process. It examines con-
versational information-seeking dialogues, the task of generating conversational
responses—particularly through retrieval-augmented generation—and addresses
the challenge of evaluating natural language responses. The final section (Sec-
tion 2.3) shifts to the open problem of explainability in Artificial Intelligence
(AI) systems, exploring the development and evaluation of explainable compo-
nents in search systems.

2.1 Information Retrieval

Information retrieval is a field concerned with the structure, analysis, organiza-
tion, storage, searching, and retrieval of information (Salton, 1968). Document
retrieval is a core task in IR, where the goal is to identify a subset of documents
from a large document collection (a set of unordered text documents) that sat-
isfy a user’s information need defined using a query (Zhai and Massung, 2016).
Traditional search systems provide a ranked list of documents in response to
a query. Topic or domain is not restricted in these systems. In the web con-
text, short keyword queries that a user types into a search box are merely the
external manifestations of an information need, which is the motivation that
compelled the user to seek information in the first place. Belkin (1980) calls
this an “anomalous state of knowledge,” where searchers perceive gaps in their
cognitive states with respect to some task or problem. Queries are not syn-
onymous with information needs. The same information need might give rise
to different manifestations with different systems: for example, a few keywords
are typed into the search box of a web search engine, but a fluent, well-formed
natural language question is spoken to a voice assistant (Yates et al., 2021).
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Figure 2.2: Evolution of methods used for document retrieval.

Traditional IR focuses on the representation of texts and queries, and com-
parison of these representations to identify documents that are relevant to the
query (Belkin, 1995). The relevant document contains the information that a
person was looking for when they submitted a query to the search engine. The
first step of the IR process is offline indexing which includes defining the search
collection (corpus with documents), taking into account metadata, and repre-
senting items in such a way that they can be connected with information needs.
In the next step, the system performs online querying that focuses on under-
standing the query, putting it in the broader context of a specific user and the
history of interactions, and representing it in such a way that it can be matched
with the items in the collection. The retrieval model defines how a relevance
score between a document and a query is computed using their respective repre-
sentations; it estimates the utility of the document to an information need using
a scoring function. Based on the relevance scores, the system retrieves items
that match the need. The last step renders the retrieved items to be presented
to the user.

In traditional IR, the system indexes whole documents (or passages) and
returns a ranking of the most relevant items retrieved. However, more com-
plex queries may require operating on shorter text, such as text snippets, also
referred to as information nuggets. More advanced systems not only retrieve
relevant snippets of information but also synthesize them into a natural, concise,
and coherent response (see Figure 2.2). Retrieving shorter relevant information
nuggets and synthesizing them into a final response simplifies the interaction
with the system for the user and reduces the cognitive burden of extracting the
pieces of information that actually address the user’s information needs from
search results. This scenario is discussed in more detail in Section 2.2.

2.1.1 Relevance
The concept of relevance is fundamental for the functioning and evaluation of IR
systems (Borlund, 2003). Relevance is subjective, meaning it can be perceived
and assessed differently by different users. It is also dynamic, as the same
user’s perception of relevance may shift throughout a session (Borlund, 2003).
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Topical relevance—whether a document pertains to the subject at hand—differs
from user relevance, which is subjective and shaped by the individual’s abstract
information need. Ultimately, only the user who formulates the information
need can determine which documents are relevant, as evaluating relevance is
a complex cognitive process. Therefore, each person is the ultimate arbiter of
relevance for their own information need. Relevance is not an absolute truth or
an inherent property of a text that can be “unlocked” by an assessor—it varies
based on personal interpretation (Yates et al., 2021).

Relevance judgments are human-provided relevance annotations on query-
document pairs and they serve two key purposes: they are used both to train
ranking models in supervised settings and to evaluate the effectiveness of those
models. Relevance judgments reflect a particular individual’s opinion, mak-
ing them inherently subjective. Assessor agreement on relevance judgments is
typically low, with a commonly cited overlap of just 60% (Voorhees, 1998),
with overlap defined as the size of the intersection of the relevant document
sets divided by the size of the union of the relevant document sets. This low
agreement arises because assessors often interpret information needs based on
external representations like topic descriptions, which may not fully capture
the original user’s cognitive state. As a result, assessors may have differing
interpretations of what constitutes relevance. Although the specific scores of
ranking systems may vary depending on which assessor’s judgments are used,
the relative ranking of different systems tends to remain stable despite these
variations (Voorhees, 1998).

2.1.2 Text Representation
Text representations form the foundation of IR, enabling machines to represent
textual data in a manner that captures semantic and syntactic properties. Word
representation learning is typically an unsupervised or self-supervised procedure
that does not require manual training data annotation. Instead, raw texts,
available at scale, can be reliably used to compute word statistics that inform
the creation of semantic representations. These representations have evolved
from simplistic one-hot encodings to sophisticated contextualized embeddings.

One of the earliest methods for representing words, one-hot encoding, maps
each word to a distinct fixed-size binary vector. In this representation, a word
is represented as an n-dimensional vector (where n is the vocabulary size), with
all values set to zero except for one, indicating the word’s index in the vocabu-
lary. While unique, one-hot representations do not indicate semantic similarity
between words and are computationally expensive, as their size grows propor-
tionally with the vocabulary.

A significant advancement was the shift to vector space representations,
where words, documents, or other semantic units are mapped to points in a
continuous, multidimensional semantic space (Salton et al., 1975). Unlike dis-
crete one-hot representations, vector space models capture semantic similarity
by representing the relationships between words as distances in space. This rep-
resentation laid the groundwork for understanding and modeling word meaning
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through proximity.
The distributional hypothesis, stating that words occurring in similar con-

texts have similar meanings (Harris, 1954; Firth, 1957), is a foundation for early
word vector space models. Early approaches, referred to as count-based meth-
ods, used word occurrence and co-occurrence statistics to create word vectors.
However, raw frequency counts proved to be an unreliable measure of associ-
ation due to the over-representation of common words bearing little semantic
meaning, e.g. “the.” To address this, methods like positive pointwise mutual
information (PPMI) were introduced to normalize co-occurrence frequencies,
emphasizing meaningful associations between words by checking whether two
words co-occur more than they occur independently (Church and Hanks, 1990).
Despite their utility, these methods generate high-dimensional sparse represen-
tations, that require dimensionality reduction techniques like singular value de-
composition (SVD) (Turney, 2005).

With the rapid development of neural networks, they have been directly ap-
plied to learning dense and low-dimensional word representation without having
to resort to an additional dimensionality reduction step. Word embeddings were
popularized by Word2Vec (Mikolov et al., 2013), which employs a simple feedfor-
ward neural network trained using a language modeling objective. Two models,
Continuous Bag-of-Words (CBOW) and Skip-Gram, were proposed. CBOW
predicts a word based on its context, while Skip-Gram predicts context words
given a target word. These embeddings provided richer representations while
eliminating the need for separate dimensionality reduction steps.

Traditional embeddings like Word2Vec are static, meaning that a word’s
representation remains unchanged regardless of its context. Contextualized em-
beddings address this limitation by dynamically adapting word representations
based on their context. These embeddings capture both semantic and syntactic
nuances of words, enabling more sophisticated language understanding (Hewitt
and Manning, 2019). Built using advanced language models, contextualized
embeddings leverage the predictive task of modeling words within a sequence,
ensuring that both syntactic and semantic roles are encoded in the representa-
tion.

2.1.3 Language Models
A language model (LM) is a probabilistic framework, originally designed to dis-
tinguish grammatical from ungrammatical sequences in a given language (Chom-
sky, 1957). Traditional statistical language modeling relies on the n-th order
Markov assumption, estimating the probability of a sequence based on n-gram
frequencies derived from large text corpora. However, this approach faces sig-
nificant limitations due to data sparsity, as the number of possible n-grams
grows exponentially with vocabulary size and sequence length, a challenge often
referred to as the curse of dimensionality.

Neural language models address the limitations of count-based methods by
replacing discrete one-hot word representations with continuous distributed rep-
resentations. In this approach, each word is represented as a vector in a contin-
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uous space, capturing semantic and syntactic relationships. Instead of memoriz-
ing specific word sequences, neural LMs learn to generalize patterns, enabling
them to assign probabilities to unseen sequences based on their similarity to
observed patterns. This shift allows smoother and more robust modeling of
language.

Modern LMs go beyond simple next-word prediction, encoding complex syn-
tactic and semantic information. They are broadly used for both natural lan-
guage understanding and generation tasks, and their ability to learn from raw
text in an unsupervised manner has removed the bottleneck of manual knowl-
edge acquisition. Large-scale LMs are often pre-trained on extensive corpora
with a language modeling objective and then fine-tuned for specific tasks (Rad-
ford et al., 2019). This pre-training process builds contextualized embeddings
that capture deep semantic relationships and is now widely used for downstream
applications such as summarization and question-answering.

The evolution of contextualized embeddings began with ELMo (Peters et al.,
2018), which utilized recurrent neural networks (RNNs). However, RNN-based
models were quickly surpassed by Transformer-based architectures (Vaswani
et al., 2017), which offer several key advantages: (1) parallel processing of
inputs and (2) the self-attention mechanism, enabling the model to focus on
relevant words across an entire sequence, even if they are far apart. Genera-
tive Pre-trained Transformer (GPT) (Radford et al., 2018) was one of the first
attempts at representation learning with Transformers. However, both ELMo
and GPT were based on unidirectional language modeling, limiting their ability
to fully understand a word’s meaning by considering only the preceding token.
This constraint led to the development of Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019) that leverages the full Trans-
former encoder architecture to jointly condition on both left and right contexts,
enabling richer and more nuanced text representations. BERT’s bidirectional
nature is achieved through a masked language modeling objective, where cer-
tain tokens in an input sequence are masked, and the model is trained to predict
these tokens using context from both sides. Additionally, BERT introduced a
next-sentence prediction task, training the model to determine whether one
sentence logically follows another. This dual training objective allows BERT to
encode both word-level and sentence-level relationships, significantly enhancing
its ability to understand and generate coherent text.

These early pre-trained context-aware word representations, such as ELMo
and BERT, have proven to be highly effective as general-purpose semantic fea-
tures for a wide range of NLP tasks. The subsequent wave of language models
was largely driven by scaling existing solutions in terms of model size or data
volume, a strategy shown to significantly enhance performance on downstream
tasks (Kaplan et al., 2020). Model parameters have grown dramatically, from
101M in BERT and 120M in GPT-1 to 70B in LLaMA2 (Touvron et al., 2023),
540B in PaLM (Chowdhery et al., 2023), and an astounding 1.76T in GPT-
4 (OpenAI et al., 2024). These large pre-trained language models, commonly
referred to as Large Language Models (LLMs), exhibit remarkable capabili-
ties not observed to the same extent in smaller models, despite having similar
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architectures and training objectives. A prominent example is in-context learn-
ing (Brown et al., 2020), where the model generates text based on a provided
context or prompt, enabling it to produce more coherent and contextually rel-
evant responses. This makes LLMs particularly well-suited for interactive and
conversational applications. Another key advancement is Reinforcement Learn-
ing from Human Feedback (Christiano et al., 2017), a fine-tuning technique that
uses human-generated responses as rewards, allowing the model to iteratively
learn from its mistakes and improve performance over time.

Advancements in language modeling, from statistical approaches to sophis-
ticated neural architectures, have dramatically improved text representation
quality. These improvements have cascaded into better performance across a
wide range of natural language understanding and generation tasks, solidifying
language models as the backbone of modern NLP applications including con-
versational information access, multi-document abstractive summarization, and
multi-hop question answering.

2.1.4 Ranking Models
The goal of text ranking is to produce an ordered list of texts from a corpus
in response to a user query for a specific task. IR systems typically operate by
ranking items such as documents or passages. Historically, the most common
ranking approach has been to sort items by decreasing relevance according to the
Probability Ranking Principle (PRP) (Robertson, 1977). The PRP states that
documents should be ranked in descending order of their estimated probability
of relevance to the user’s information need. Ranking remains a fundamental
component in most information access approaches, serving as the primary basis
for evaluating the effectiveness of retrieval systems.

One classical approach to text ranking is the vector space model, where
documents and queries are represented as vectors in a high-dimensional space.
The core idea is that if a document d1 is more similar to the query than another
document d2, d1 is considered more relevant. In this model, each dimension cor-
responds to a term in a vocabulary, and relevance is determined by calculating
similarity measures such as the dot product or cosine similarity between the vec-
tors representing the query and document (Salton et al., 1975). Common text
representations include the term frequency-inverse document frequency (TF-
IDF), which assigns greater weight to terms that appear in fewer documents, as
such terms are more likely to be indicative of relevance.

In contrast, probabilistic retrieval models treat queries and documents as
random variables and estimate the likelihood that a document is relevant to
a query. The score of a document is defined with respect to a query as the
probability that this random variable is equal to 1 given a particular document
and query (Lafferty and Zhai, 2003). One prominent probabilistic model is the
query likelihood model, which quantifies how likely it is that a given query would
be generated by sampling words from a specific document (Ponte and Croft,
1998). Among the most effective retrieval models derived from this framework
is BM25, which adjusts for term frequency and document length, making it a
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widely-used method (Robertson and Zaragoza, 2009).1
The joint characteristic of both vector space and probabilistic models is their

reliance on sparse representations, where each vector has a length correspond-
ing to the vocabulary size, with components encoding discrete values indicating
the presence or absence of a term in a document. These sparse representations,
based on the bag-of-words (BOW) model, ignore word positions and treat texts
as unordered sets of terms. While sparse representations can be efficiently in-
dexed using inverted indices, they suffer from a key limitation: the vocabulary
mismatch problem. This arises because traditional models rely on exact term
matching between the query and document, meaning that relevant documents
might not be retrieved if they do not contain the specific query terms, even if
they address the same underlying information need.

2.1.5 Neural IR
BM25 and other term-weighting schemes briefly discussed in the previous section
are typically unsupervised, relying on statistical properties of terms within texts
to estimate relevance. In contrast, learning-to-rank (LTR) approaches lever-
age supervised machine learning to create ranking models based on manually-
engineered features. These features are often derived from statistical properties
of terms and intrinsic text characteristics (Liu, 2010). However, LTR models
require extensive feature engineering, which is labor-intensive and limits scala-
bility. The emergence of deep learning has enabled the use of continuous vector
representations (see Section 2.1.2), removing the need for such hand-crafted fea-
tures while addressing challenges associated with exact term matching (Yates
et al., 2021).

Neural ranking models can be broadly classified into two types. Representa-
tion-based models independently learn dense vector representations of queries
and documents and compare them using similarity metrics like cosine similarity
or inner products (Nalisnick et al., 2016; Huang et al., 2013). Interaction-based
models, on the other hand, focus on capturing term-level interactions between
queries and documents by generating a similarity matrix to determine rele-
vance (Guo et al., 2016; McDonald et al., 2018). Both approaches typically use
neural models, such as convolutional or recurrent neural networks, to extract
relevance signals and are trained end-to-end using relevance judgments. The
deep learning shift accelerated with the introduction of BERT (Devlin et al.,
2019) (see Section 2.1.3), which was first applied to the MS MARCO passage
ranking task (Nogueira and Cho, 2019), and started a new era of transformer-
based ranking models.

One of the most notable applications of BERT in ranking is the monoBERT
model, which formulates text ranking as a binary classification problem where
the model predicts the probability that a text is relevant to the user’s query.

1Even though BM25 originates from the probabilistic retrieval framework, it functions as
a term-weighting scheme, interpreting term contributions to relevance, and operates similarly
to the vector space model using inner products on sparse bag-of-words vectors.
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This a direct realization of PRP where documents are ranked based on their
estimated probability of belonging to the relevant class (Nogueira and Cho,
2019). MonoBERT is a pointwise approach, meaning each document is evalu-
ated independently during training (Liu, 2010) and it assumes binary relevance.
In contrast, duoBERT adopts a pairwise approach, comparing two candidate
documents at a time to estimate which is more relevant to the query (Nogueira
et al., 2019). Pairwise ranking has the advantage of harnessing signals present in
other candidate texts to decide if a text is relevant to a given query, implement-
ing the notion of graded relevance judgments. Although pairwise approaches
can yield more nuanced rankings, they are computationally expensive due to
their quadratic growth in the number of comparisons as the size of candidates
set increases (Nogueira et al., 2019).

Modern ranking pipelines often employ multi-stage retrieval, where an initial
sparse retrieval method (e.g., BM25) identifies a candidate set of documents,
followed by neural rerankers like monoBERT to refine the ranking. However,
keyword-based retrieval methods can miss relevant documents due to the vocab-
ulary mismatch problem, where the query and relevant documents use different
terminology. Dense retrieval models address this challenge by learning dense
representations of queries and documents, transforming text into fixed-length
vectors. These vectors are optimized so that the similarity between relevant
query-document pairs is maximized, while non-relevant pairs are minimized,
based on a given similarity metric. In dense retrieval, document representations
are precomputed offline to facilitate low-latency searches. At query time, query
and document vectors are compared using simple operations like inner product,
enabling efficient nearest neighbor search. To scale this approach, techniques
such as approximate nearest neighbor (ANN) algorithms are often employed,
making dense retrieval a practical solution for large collections (Xiong et al.,
2020).

One of the first approaches in dense retrieval is DPR proposed for open-ended
QA (Karpukhin et al., 2020). DPR leverages the BERT pretrained model along-
side a dual-encoder architecture and focuses on an optimized training scheme
using a relatively small number of question-passage pairs. The embeddings are
trained to maximize the inner product between question and relevant passage
vectors, with the objective of comparing all pairs of questions and passages in
a batch. Around the same time, ANCE (Approximate Nearest Neighbor Neg-
ative Contrastive Estimation) was introduced (Xiong et al., 2020). Like DPR,
ANCE employs a bi-encoder design, but it uses RoBERTa’s [CLS] token rep-
resentation as the encoder and applies the same encoder to both queries and
documents. ANCE introduces hard negative selection via ANN search on an
index built from encoder-generated representations. To mitigate the computa-
tional burden of maintaining a fully up-to-date index, the ANN index is updated
asynchronously during training.

Recent advancements in ranking techniques have taken advantage of LLMs.
RankGPT demonstrates the successful application of generative LLMs, such as
ChatGPT and GPT-4, for relevance ranking (Sun et al., 2023). RankVicuna
is the first fully open-source LLM capable of performing high-quality listwise
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reranking in a zero-shot setting (Pradeep et al., 2023). It uses RankGPT as
a teacher model to generate high-quality ranked lists through prompt decod-
ing. Another innovative approach, the Pairwise Ranking Prompting (PRP)
paradigm, simplifies ranking tasks for LLMs by including only the query and a
pair of documents in the prompt (Qin et al., 2024). This approach reduces task
complexity for LLMs and resolves calibration issues. PRP relies on straightfor-
ward prompt design and works with both generative and scoring LLM APIs.
PRP has achieved state-of-the-art ranking performance using moderate-sized,
open-source LLMs on standard benchmark datasets.

2.1.6 Evaluation
Evaluation in IR presents significant challenges due to the vast size of corpora
and the inherent ambiguity in queries representing user information needs. The
complexity is compounded by the fact that IR systems are highly interactive,
with users playing a central role in the process. There are two primary ap-
proaches to capturing the human element in evaluation: system-oriented and
user-oriented evaluations (Gao et al., 2023a). System-oriented evaluation fo-
cuses on fixed datasets that capture user requests and preferences, which can
be shared and reused. This approach allows researchers to develop models that
best match the preferences captured in the dataset, supporting both component-
based and end-to-end evaluations. In contrast, user-oriented evaluation observes
real users interacting with the system, either in controlled lab environments or
field studies. These studies may involve surveys or diary entries to gain deeper
insights into user behavior. For deployed systems, user log data can be analyzed
to capture large-scale interactions, though interpreting this data to improve sys-
tem evaluation poses its own challenges (Dumais et al., 2014). Both approaches
are complementary, with each informing the other in improving IR systems (Gao
et al., 2023a).

System-Oriented Evaluation

A test collection for evaluating IR models includes a text corpus, a set of in-
formation needs (topics), and relevance judgments (qrels). The Text Retrieval
Conference (TREC) series organized by the National Institute of Standards
and Technology (NIST), facilitates large-scale, community-wide evaluations of
IR methods, enabling collaboration between academia, industry, and govern-
ment. TREC workshops, initiated in 1992, have shaped IR research, offering
standardized test collections and fostering technology transfer to real-world ap-
plications. System evaluation at TREC follows the Cranfield paradigm which is
a system-oriented methodology that treats search as an optimization problem
and uses quantitative ranking metrics, such as precision, recall, and reciprocal
rank, which are based on relevance judgments (Sanderson, 2010). Discounted
cumulative gain (DCG) is a more advanced metric that accounts for graded rel-
evance and the diminishing likelihood that users will examine lower-ranked doc-
uments (Kekäläinen and Järvelin, 2002; Järvelin and Kekäläinen, 2002). Follow-
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ing this system-oriented evaluation approach, TREC’s “top-k pooling” method
gathers top-ranked results from participants for each topic to generate relevance
judgments. TREC’s success has inspired similar initiatives worldwide, such as
CLEF in Europe and NTCIR in Asia.

Due to the time and cost involved in document-based relevance judgments,
alternative approaches like nugget-based evaluation have been explored. The
main task of TREC’06 Question Answering Track consists of series of natural
language questions and the goal is to return answers, rather than documents con-
taining answers. System answers are evaluated by identifying “nuggets” defined
as “minimal, atomic units of relevant information” representing a conceptual
entity (Pavlu et al., 2012). Nuggets are classified by the assessor as either vital
(representing concepts that must be present in a good answer) or okay (contain-
ing interesting information, but are not essential) with an F-score defined as a
weighted harmonic mean between nugget precision and nugget recall, that is cal-
culated solely on vital nuggets. Nugget pyramids extend this idea by collecting
judgments from multiple assessors for finer granularity (Dang and Lin, 2007).
Similarly, Semantic Content Units (SCU), defined as concise sentences contain-
ing a single fact, are used in summary evaluation to assess factual accuracy and
coverage. The Pyramid method involves extracting SCUs from reference sum-
maries and checking system summaries for SCU coverage to generate an overall
score (Nenkova and Passonneau, 2004; Shapira et al., 2019).

The idea of using large language models (LLMs) as “judges” for relevance is
getting a lot of attention, with recent studies showing potential but also limita-
tions (Faggioli et al., 2023; Dietz, 2024; MacAvaney and Soldaini, 2023; Balog
et al., 2025). There is a spectrum of collaboration between humans and LLMs in
this task, from fully human-driven judgments to fully automated ones, with var-
ious mixed approaches in between. LLMs can enhance relevance judgments by
offering explanations, scalability, and consistency, underlining the great poten-
tial of deploying them as a complement to human assessors in certain judgments
task. Faggioli et al. (2023) show promising results, with LLM judgments corre-
lating reasonably well with human assessments, though LLMs sometimes miss
subtle details that humans catch, especially in borderline scenarios. Sensitiv-
ity, or the ability to detect meaningful differences between retrieval systems, is
also generally lower in LLM judgments than in human ones. However, LLMs
prove their effectiveness in evaluating open-domain questions. Well-instructed
LLMs can distinguish between relevance and utility, and are highly receptive to
newly generated counterfactual passages (Zhang et al., 2024). The EXAM++
Answerability Metric further illustrates the potential of LLMs for automatically
assessing the information content of a system’s response, without resorting to
expensive human judgments (Farzi and Dietz, 2024a).

User-Oriented Evaluation

The Cranfield paradigm for evaluating information retrieval and text ranking
systems raises concerns about whether test collections truly reflect real-world
information needs. A key question is whether system improvements, as mea-
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sured by Cranfield, actually benefit users. The ultimate goal is user satisfaction,
as users seek information to accomplish tasks like making a purchase, writing
a report, or finding a job. However, improvements in ranking models do not
necessarily translate into better task performance for users (Hersh et al., 2000).
While Cranfield evaluations provide useful insights into model effectiveness, they
miss the complete picture and should be complemented by human evaluations
to ensure real-world usefulness.

Interactive evaluations, which place humans in the loop, are crucial for un-
derstanding user behavior in information-seeking dialogues (Kelly, 2007). User-
focused criteria in interactive IR include credibility, cognitive load, engagement,
satisfaction, information gain, effort, and task success (Anand et al., 2019).
From a retrieval perspective, factors like utility and completeness are important,
while dialogue evaluations consider information gain about the user and error
recovery. Usability measures, on the other hand, rely on evaluative feedback
from users, gaining insights into their attitudes, feelings, and overall experience
with the system (Kelly, 2007).

Human evaluation is often performed using user studies or crowdsourcing.
The two approaches differ significantly in their objectives, participant selection,
and methodology. A user study is typically focused on in-depth analysis of
user behavior, preferences, or usability, with carefully selected participants who
represent the target demographic or user base. It is often used to test specific
features or hypotheses within a controlled environment. Factorial designs are
commonly used to study the effects of multiple variables on outcome measures,
with each variable, or factor, having discrete levels. Studies may use between-
or within-subjects designs, or a mix of both, to examine the impact of these
variables. Techniques like rotation, counterbalancing, and randomization help
control for order effects. Pilot tests are essential to refine the study setup,
instruments, and protocols, ensuring the reliability and validity of the main
experiment (Kelly, 2007).

In contrast, crowdsourcing gathers input, data, or services from a large, di-
verse group of people through online platforms. Crowdsourcing participants are
generally less targeted, as the goal is to scale data collection or problem-solving
across many individuals quickly and efficiently. Crowdsourcing harnesses the
intelligence of large, diverse groups to complete tasks that computers struggle
with, but it also introduces challenges in quality control due to the varied skills
and motivations of crowd workers (Daniel et al., 2019). Platforms like Ama-
zon Mechanical Turk have proven effective for quickly and affordably evaluating
search relevance by employing quality control methods such as training phases
and inserting gold-standard data (Le et al., 2010). Crowdsourcing combines
scalability with the power of human judgment to solve complex tasks, but task
quality depends heavily on factors like worker characteristics (Kazai et al., 2011),
platform design (Vakharia and Lease, 2013), task setup (Eickhoff, 2018), and
quality measures employed (Allahbakhsh et al., 2013). The design of manual
annotation, including the number and assignment of annotators, significantly
impacts the reliability of data for statistical analysis (Steen and Markert, 2021).
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2.2 Conversational Information Seeking

Conversational AI has traditionally been categorized into task-oriented and
non-task-oriented systems (Chen et al., 2017). More contemporary distinctions
expand this view, identifying task-oriented systems, social chats, and interac-
tive question-answering (QA) systems as distinct categories (Gao et al., 2019).
Among these, conversational information access represents a specialized sub-
set of conversational AI systems that focus on task-oriented exchanges. These
systems support diverse user goals, such as search, recommendation, and ex-
ploratory information gathering, often requiring multi-step interactions across
multiple modalities. They blend characteristics of task-oriented and interac-
tive QA systems, leveraging both short-term and long-term user information to
address complex information-seeking tasks (Gao et al., 2023a).

At its core, a conversational information access process can be viewed as
a task-oriented dialogue, where the primary task is information seeking (Gao
et al., 2023a). Information-seeking tasks are generally classified into two cate-
gories: information lookup and exploratory search (Marchionini, 2006). Lookup
tasks involve retrieving factoid answers or addressing specific questions for which
modern search engines and database systems are well-suited. In contrast, ex-
ploratory tasks are more complex, requiring long-term iterative interactions. Ex-
ploratory searches demand an intensive sensemaking process (Pirolli and Card,
2015), where users synthesize information from multiple sources to form a con-
ceptual understanding. Examples include learning searches, which require syn-
thesizing information to gain new knowledge, and investigating searches, such as
travel planning or academic research, where users iterate through information
to form personal perspectives (Gao et al., 2023a).

Conversation, as an interactive process for exchanging information, involves
a sequence of interactions between two or more participants—humans or ma-
chines. Information-seeking conversations specifically aim to satisfy the infor-
mation needs of one or more participants. Conversational Information-Seeking
(CIS) systems enable users to navigate unfamiliar domains, address complex
information needs, ask follow-up questions, and provide feedback through nat-
ural language dialogues (Zamani et al., 2023). These systems address a wide
range of queries, from straightforward factoid questions to open-ended inquiries
requiring the exploration of diverse viewpoints. Exploratory search, a common
scenario in CIS interactions, often involves users with little prior knowledge
about the topic, making them more susceptible to misinformation or biases due
to their limited ability to verify the system’s responses (Schneider et al., 2023).
By facilitating iterative, multi-turn dialogues, CIS systems address the inherent
complexities of information-seeking tasks, bridging the gap between user intent
and the vast landscape of available information.

2.2.1 Conversational Search Systems
A CIS system is designed to address the information needs of one or more users
through interactive, dynamic conversations. These systems provide responses
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that are concise, fluent, stateful, mixed-initiative, context-aware, and person-
alized (Zamani et al., 2023). Conversational search focuses on retrieving and
synthesizing information through iterative, context-driven dialogues. Unlike
question answering, which often provides direct and specific responses, con-
versational search deals with broader and more complex information-seeking
dialogues. This includes addressing open-ended questions requiring descrip-
tive answers, indirect responses that involve inference or contextual knowledge,
and queries with partial answers distributed across multiple passages (Bolotova-
Baranova et al., 2023). This complexity means that conversational search sys-
tems must go beyond simply returning snippets from the top-retrieved passages;
they need to synthesize information from multiple sources to construct compre-
hensive and coherent responses.

Conversational search systems enable a mixed-initiative interaction, where
both the user and the system contribute to guiding the dialogue. The system’s
actions are informed by a dynamic understanding of the user’s current needs,
taking into account both the immediate conversational context and long-term
knowledge about the user (Radlinski and Craswell, 2017). To effectively support
these interactions, the system helps users articulate and refine their information
needs, including uncovering latent preferences (so-called user revealment). At
the same time, it transparently communicates its capabilities and limitations,
helping users form realistic expectations of what it can and cannot do (system
revealment). The system also maintains memory of past interactions, allowing
users to reference previous statements and ensuring consistency unless explic-
itly contradicted. Furthermore, it reasons about the utility of sets of comple-
mentary items, optimizing its retrieval process to provide more comprehensive
support (set retrieval) (Radlinski and Craswell, 2017). By integrating these
features, conversational search systems are able to manage iterative, adaptive,
and context-sensitive interactions. This makes them particularly well-suited to
addressing complex, exploratory information-seeking tasks.

Mixed Initiative

Mixed-initiative interaction is a flexible interaction strategy in conversational
search systems where both the user and the system contribute to the conversa-
tion independently. This approach allows the system to take control either at
the dialogue level, by asking clarifying questions or requesting elaboration, or
at the task level, by suggesting alternative courses of action (Horvitz, 1999). By
enabling both participants to initiate and guide the dialogue, mixed-initiative
systems achieve a more human-like and dynamic interaction. The primary ob-
jective of incorporating mixed-initiative strategies is to improve search effective-
ness by allowing the system to take the initiative when needed (Radlinski and
Craswell, 2017).

At different points in a conversation, the balance of initiative may shift be-
tween the user and the system. For instance, the system might take the lead to
clarify ambiguous user requests, elicit additional information, or prevent errors,
while also allowing the user to drive the dialogue at other times (Radlinski and
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Craswell, 2017). Clarifying questions help resolve ambiguities in user inputs,
minimize errors, and refine the understanding of user needs. Advanced systems
enhance these capabilities further by incorporating context tracking, enabling
them to continuously monitor the topic of conversation and ask follow-up ques-
tions (Zamani et al., 2023). This interplay enhances the system’s ability to
provide accurate and relevant responses.

Another dimension of mixed-initiative interaction is system revealment, which
emphasizes transparency, reliability, and trustworthiness by disclosing the sys-
tem’s capabilities and the underlying corpus (Radlinski and Craswell, 2017;
Azzopardi et al., 2018). Through system revealment, users gain a better under-
standing of the scope and limitations of the system, which helps manage their
expectations. In conversational search, this involves informing users about the
characteristics of the available search space and assisting them in articulating
their information needs (Radlinski and Craswell, 2017). For example, when a
user’s information need is unclear and the system is unable to locate an answer,
it might ask clarifying questions. Similarly, when the system understands the
query but the desired information is unavailable in its collection, it must handle
unanswerable questions appropriately, maintaining user trust and engagement.

TREC Conversational Assistance Track (CAsT)

Launched in 2019, the TREC Conversational Assistance Track (CAsT) has
played a pivotal role in advancing research on CIS systems by providing large-
scale reusable test collections (Dalton et al., 2019, 2020). Unlike generative AI
approaches, TREC CAsT emphasizes answers grounded in specific passages,
focusing on conversational passage retrieval as a key problem (Pradeep et al.,
2021; Vakulenko et al., 2021c; Luan et al., 2021). These collections include
MS MARCO (Campos et al., 2016), Wikipedia (Petroni et al., 2021), TREC
CAR (Dietz et al., 2018), and the Washington Post v4.2

One of the main characteristics of TREC CAsT tasks is their emphasis on
context. In the 2019 edition of the task (Dalton et al., 2019), user utterances
are contextualized solely by references to previous user utterances. Since 2020,
the task scope expands significantly by incorporating references to prior system
responses, requiring systems to integrate a broader range of contextual infor-
mation (Dalton et al., 2020). TREC CAsT’21 is characterized by the increased
dependence on previous system responses, as well as simple forms of user reveal-
ment, reformulation, and explicit feedback introduced in users’ utterances (Dal-
ton et al., 2021). Starting in 2020, the task scope expanded significantly by in-
corporating references to prior system responses, requiring systems to integrate
a broader range of contextual information (Dalton et al., 2020). By 2021, the
task introduced even greater dependence on previous system responses, along
with simple forms of user revealment, reformulation, and explicit feedback em-
bedded in user utterances (Dalton et al., 2021). TREC CAsT collections have

2https://trec.nist.gov/data/wapost/
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Figure 2.3: Architecture of a two-step passage ranking pipeline with a query
rewriting module.

provided a crucial benchmark for enabling systems to handle increasingly com-
plex and dynamic interactions effectively.

Standard CIS Pipeline

By the time of TREC CAsT’21, a standard architecture for conversational search
systems had emerged, characterized by a two-step passage ranking pipeline (see
Figure 2.3). The first step typically involves passage retrieval using an unsu-
pervised sparse retrieval model, such as BM25. This initial retrieval is followed
by reranking, employing a neural model trained on passage retrieval tasks, such
as T5 fine-tuned on MS MARCO (Craswell et al., 2020). A key element of this
pipeline is a query rewriting module that ensures the conversational queries to
be de-contextualized, making them independent of previous dialogue turns.

Query rewriting is central to managing conversational phenomena such as
omission, coreference (Dalton et al., 2019), zero anaphora, topic changes, and
topic returns (Voskarides et al., 2020). Approaches to query rewriting can be
grouped into three categories: unsupervised methods, supervised feature-based
methods, and supervised neural methods. Unsupervised query rewriting meth-
ods expand the original query using terms from the conversation history. This
can be achieved using similarity metrics, such as BM25 scores (Yilmaz et al.,
2019), cosine similarity (Voskarides et al., 2019), or frequency-based signals (Lin
et al., 2021). Supervised feature-based approaches rely on linguistic features,
including dependency parsing, coreference resolution, named entity recognition,
and part-of-speech tagging (Mele et al., 2020). Supervised neural methods, on
the other hand, leverage large pre-trained language models like GPT-2 (Vaku-
lenko et al., 2021a) or T5 (Yan et al., 2021), fine-tuned on conversational
datasets such as CANARD (Vakulenko et al., 2021a) or QReCC (Yan et al.,
2021). These neural models can generate reformulated queries, further enriched
with conversation history terms (Vakulenko et al., 2021a), paraphrases (Ju et al.,
2021), or sentences from semantically related documents (Chang et al., 2020).

The architectural choices in CIS systems exhibit significant diversity. While
the most common pipeline involves retrieval followed by reranking and query
rewriting, alternative approaches have also been explored. For instance, some
systems adopt few-shot conversational dense retrieval, which scores documents
using the dot product of contextualized embeddings of user utterances and col-
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lection of documents (Yu et al., 2021). Another technique, document expansion,
addresses vocabulary mismatches between user queries and document content,
where sequence-to-sequence models are employed to enhance document content
by boosting term statistics and generating additional terms. Techniques like
Doc2Query generate new queries tailored to a specific document, making it
more likely to align with diverse query formulations (Gospodinov et al., 2023).
Together, these advancements in query rewriting, passage retrieval, reranking,
and document expansion form the backbone of modern conversational search
system pipelines, enabling them to find documents addressing complex infor-
mation needs. However, to make the system truly conversational, an additional
step is needed to synthesize the retrieved information into a natural language
response.

2.2.2 Response Generation
Traditional search engines focus on delivering ranked lists of documents, leaving
users to actively go through the results to find specific answers (White, 2014). In
contrast, conversational response generation aims to synthesize information from
retrieved passages into a single, concise, and coherent response that captures
the most relevant details in an easily consumable form. This process requires
responses to be factual, grounded in credible sources, complete, transparent,
coherent, and free from hallucinations (Sakai, 2023; Gienapp et al., 2024).

The growing interest in conversational response generation spans various
domains, including task-oriented dialogue systems (Budzianowski et al., 2018;
Lippe et al., 2020; Pei et al., 2020; Dubiel et al., 2020), question answering (Ba-
heti et al., 2020), and open-domain chatbots (Xing et al., 2017; Dziri et al., 2019;
Tian et al., 2019). Its application to conversational information-seeking gained
momentum in the 2022 edition of TREC CAsT, which introduced a subtask
focused on generating responses from retrieved results (Owoicho et al., 2022).
The approach proposed by Ren et al. (2021) divides this task into three stages:
(optional) query rewriting, identifying supporting sentences from search engine
result pages, and summarizing them into concise conversational responses.

Generative language models, such as GPT-2 (Zhang et al., 2020b), have
become instrumental in response generation. However, aggregating support-
ing facts through abstractive summarization (Ferreira et al., 2022; ter Hoeve
et al., 2022) introduces risks of factual errors (Tang et al., 2023) and halluci-
nations (Cao et al., 2016). Existing search engine responses often produce out-
puts of high fluency and perceived utility that frequently contain unsupported
statements or inaccurate citations (Liu et al., 2023a). Even with the recent de-
velopment of LLMs, abstractive summaries still suffer from faithfulness errors
related to generating information that is not present in the original text (Lad-
hak et al., 2022) and factual errors (Tang et al., 2023; Falke et al., 2019; Tang
et al., 2022). In general, factual accuracy of current generative language mod-
els is often lacking, making them particularly prone to hallucinations (Ji et al.,
2023; Koopman and Zuccon, 2023; Tang et al., 2023). Despite advancements,
CIS systems remain vulnerable to these limitations, emphasizing the need for
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research to improve system transparency, explainability, and reliability.
Challenges also arise from the nature of retrieved documents. In ad hoc re-

trieval, a document is deemed relevant if it contains at least one useful piece of
information (Pavlu et al., 2012), even if most of its content is unrelated or only
vaguely related to the query. Research shows that unrelated text can severely
hinder retrieval-augmented generation (RAG) systems (Cuconasu et al., 2024),
while evidence in the prompt, even if accurate, may degrade response accuracy
for complex queries (Koopman and Zuccon, 2023). Additionally, language mod-
els often struggle to utilize long contexts effectively, with performance dropping
significantly when relevant information is embedded in the middle of lengthy
inputs (Koopman and Zuccon, 2023). These findings challenge the efficacy of
basic retrieve-then-generate pipelines and highlight the importance of address-
ing irrelevant information in the generation process.

Response Requirements

In CIS systems, conversational responses must meet key requirements to ensure
the effectiveness and reliability of the system. A critical aspect is response
grounding, which ensures response faithfulness to reliable sources (Gienapp
et al., 2024). Two primary dimensions for grounding are source attribution and
verifiability. Source attribution evaluates the accuracy with which a generated
response uses cited documents, facilitating easier verification of claims (Rashkin
et al., 2021). Verifiability requires every generated statement to be supported
by citations, ensuring that responses are based on evidence that users can in-
vestigate (Liu et al., 2023a). However, systems with high citation precision may
produce responses lacking fluency, while more fluent responses risk misleading
users due to unsupported claims.

The correctness of information included in the generated responses is tightly
bound to source attribution. Evaluating factual correctness requires background
knowledge and general familiarity with the topics. Therefore, the actual cor-
rectness of the responses does not always align with the perceived one.

Completeness is another vital response characteristic, especially for address-
ing non-factoid questions. Responses must cover the question’s aspects compre-
hensively, including explanations, examples, and diverse opinions where appli-
cable. Users consistently rate answers higher when they are not only correct but
also complete, demonstrating that completeness contributes significantly to per-
ceived quality (Bolotova et al., 2020). The usefulness of responses depends also
on their relevance and comprehensiveness. Answers should be detailed but con-
cise, free of inconsistencies, and presented in a readable and unbiased manner.
Features like serendipity—offering unexpected yet valuable information—and
references to additional sources further enhance the perceived utility (Cam-
bazoglu et al., 2021). All these elements collectively define user satisfaction
with CIS systems.
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Retrieval-Augmented Generation (RAG)

Recently proposed Retrieval-Augmented Generation (RAG) systems aim to ad-
dress the problem of hallucinations and facilitate grounding of the generated re-
sponses, which is particularly important in knowledge-intensive conversational
information-seeking tasks. They combine retrieval and generative processes to
produce more factually correct and diverse outputs (Lewis et al., 2020). RAG
systems follow different approaches, each enhancing the integration of retrieval
and generation. Naive RAG consists of a straightforward pipeline: indexing, re-
trieval, and generation. Advanced RAG builds on this by incorporating pre- and
post-retrieval optimization strategies, retaining a sequential structure. Modular
RAG further improves with flexible architectures, introducing functional mod-
ules and allowing iterative and adaptive retrieval. Iterative retrieval alternates
between retrieval and generation to refine context, recursive retrieval decom-
poses complex queries into subproblems, and adaptive retrieval dynamically
determines the necessity of external knowledge retrieval and when to terminate
the process (Gao et al., 2023b).

Generative processes in RAG systems are typically conditioned on the re-
trieved material. Evidence can be incorporated into prompts (Izacard and
Grave, 2021; Shi et al., 2024; Ram et al., 2023) or attended to during inference
through a learned textual knowledge retriever (Guu et al., 2020). Retrieval-
augmented generation models also integrate parametric and non-parametric
memory to balance the retrieval and generation processes (Lewis et al., 2020;
Huang and Huang, 2024). While these approaches enhance the alignment of
generated responses with retrieved evidence, challenges such as factual accu-
racy and the influence of irrelevant content persist.

Context curation plays a crucial role in RAG systems, as directly feeding
all retrieved information to a language model (LLM) can lead to degraded per-
formance. Redundant or lengthy contexts may result in issues like the “lost
in the middle” problem, where LLMs struggle to utilize information effectively
when it appears in the middle of a long text (Liu et al., 2024). To address
this, retrieved content often undergoes further refinement. Techniques such as
prompt compression use small language models to remove unimportant tokens,
producing a streamlined input that remains comprehensible to LLMs while re-
ducing unnecessary complexity (Jiang et al., 2024). Other approaches, like
training information extractors or condensers through contrastive learning, fo-
cus on isolating and retaining essential information while discarding irrelevant
details (Yang et al., 2023; Xu et al., 2023).

In addition to these RAG approaches, multi-stage frameworks have been de-
veloped to address the complexity of large-scale systems. For example, Pistic-
RAG employs distinct stages, including matching, pre-ranking, ranking, reason-
ing, and aggregating, to refine the retrieval process and align it with LLM capa-
bilities (Bai et al., 2024). Similarly, the CompAct framework actively compresses
retrieved documents into compact contexts, iteratively refining inputs until suf-
ficient information is gathered to generate a complete response (Yoon et al.,
2024). Another enhancement leverages meta-knowledge to cluster documents



CHAPTER 2. BACKGROUND 29

into metadata-based sets of synthetic questions and answers, guiding query
augmentation and retrieval for more personalized and effective responses (Mom-
baerts et al., 2024). While promising, RAG systems face limitations in terms
of transparency, often failing to identify low-confidence responses or address
flaws arising from the incompleteness of retrieved content or biased generation
processes.

2.2.3 CIS Response Evaluation
The evaluation of conversational responses involves addressing multiple dimen-
sions that capture different aspects of response quality. While response use-
fulness remains the most commonly assessed dimension in human evaluation,
its subjective nature makes it heavily dependent on the user’s specific infor-
mation needs. A utility model proposed by Gienapp et al. (2024) identifies
coherence, coverage, consistency, correctness, and clarity as critical dimensions
for evaluation, each encompassing distinct sub-dimensions. Coherence involves
logical and stylistic organization of the response, shaping the manner in which
information is conveyed. Coverage evaluates the breadth and depth of informa-
tion, ensuring that the response addresses the user’s needs comprehensively. It
is closely related to response completeness, which captures the extent to which
the question is answered. Statement-level consistency examines the relationship
between generated content and its supporting sources (Rashkin et al., 2021).
Correctness emphasizes factual and topical accuracy, grounded in verifiability
rather than absolute truth, and aligns with the broader concept of faithfulness,
which measures the accuracy of generated responses against their sources (Falke
et al., 2019), ensuring the generation process with no misinformation (Es et al.,
2024). Proposed faithfulness evaluation metrics are based on entailment of
the generated output in the source article (Falke et al., 2019), BERT-based
faithfulness classification (Kryscinski et al., 2020), or factuality detection model
(DAE) trained on word-, dependency- and sentence-level faithfulness annota-
tions (Goyal and Durrett, 2021). The ultimate goal is increasing the faithful-
ness of the generated summary, while not increasing the extractiveness which is
referred to as effective faithfulness (Ladhak et al., 2022). The last dimension,
clarity, focuses on the salience of information, requiring responses to prioritize
essential content. Techniques like the Atomic Content Unit annotation protocol
further enhance objectivity in assessing clarity by isolating individual facts for
evaluation (Liu et al., 2023b). Clarity is also closely linked to relevance, de-
fined as how well the response addresses the subject of the question. Relevance
has been identified as a key factor in answer utility, showing a strong correla-
tion with how useful users perceive answers to be—especially in the context of
non-factoid questions (Cambazoglu et al., 2021).

Automatic Nugget-based Evaluation

The standard methodology for reproducible evaluation in traditional informa-
tion retrieval research and development is offline evaluation (see Section 2.1.6).
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This involves a document collection, user-reflective topics, and test systems (Sander-
son, 2010). In generative IR, while this basic procedure remains relevant, an
additional layer of complexity arises from the need to evaluate the generated re-
sponse text alongside the ranked lists of retrieved document identifiers (Gienapp
et al., 2024). Therefore, the evaluation of CIS responses encompasses two pri-
mary aspects: retrieval-based and generation-based evaluation. Retrieval-based
evaluation focuses on the system’s effectiveness in retrieving relevant informa-
tion to support generation tasks (see Section 2.1.6). In contrast, generation-
based evaluation assesses the quality of the text produced by large language
models, using measures such as linguistic quality and fluency with BLEU (Pa-
pineni et al., 2001) and ROUGE-L (Lin, 2004), and overlap with ground-truth
responses through metrics like Exact Match (Huang and Huang, 2024).

Responses provided by the system can be annotated holistically or segmented
into smaller units for more granular analysis (Sakai, 2023; Gienapp et al., 2024).
Responses are often conceptualized as sequences of atomic statements, each op-
tionally linked to sources of evidence. These statements are treated as discrete
“atomic/semantic content units” (Nenkova et al., 2007; Liu et al., 2023b) or “in-
formation nuggets” (Pavlu et al., 2012; Sakai, 2023), representing minimal units
of relevant information that address user information needs (Gienapp et al.,
2024) (similarly to what has been proposed for nugget-based relevance evalu-
ation). Nugget-based evaluation of responses is rooted in the TREC’03 QA
track (Voorhees, 2004), where assessors identified relevant information nuggets
across submissions and marked their presence in system outputs. This method-
ology has been adapted for modern RAG systems and validated during the
TREC RAG’24 track, which introduced the AutoNuggetizer evaluation frame-
work comprising two steps: nugget creation and nugget assignment (Pradeep
et al., 2024). In nugget creation, nuggets are formulated based on relevant doc-
uments and classified as either “vital” or “okay” (Voorhees, 2004). Traditionally,
human assessors performed this task, but AutoNuggetizer automates this step
by iterative LLM prompting. The second step, nugget assignment, involves as-
sessing whether a system’s response contains specific nuggets from the answer
key. In the AutoNuggetizer framework, this step has also been automated us-
ing LLMs to match nuggets with system responses. Together, these processes
ensure a fast and scalable evaluation of CIS system outputs.

2.2.4 CIS System’s Limitations and Challenges
Despite rapid advancements and growing interest, CIS systems face numer-
ous challenges and limitations. Among these are issues of unanswerability,
where systems fail to fully address user queries or generate hallucinated con-
tent when no relevant context is found. While retrieval-augmented generation
is a promising direction in mitigating hallucinations and extending knowledge
beyond training data (Shuster et al., 2021), multiple challenges persist. The
conventional notion of relevance in retrieval is insufficient, as relevant passages
may lack complete answers or need additional reasoning over multiple sources.
Measures like answerability and completeness, although critical, remain difficult
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to evaluate automatically (Chen et al., 2021; Pavlu et al., 2012).
Out-of-scope queries further complicate CIS systems, as they often hinge on

assumptions or conditions that make them unanswerable. Techniques like local
entailment and semantic extraction aim to detect these mismatches between
the semantic representations of the question with the context (Hu et al., 2019;
Huang et al., 2019a), yet the field still lacks robust frameworks for address-
ing such queries comprehensively. Temporal considerations also pose significant
challenges, as time-sensitive queries require parsing temporal information and
understanding time-evolving facts (Allein et al., 2021; Yang et al., 2024). Tem-
poral IR methods attempt to integrate document relevance with temporal rele-
vance (Campos et al., 2015), but assessing temporal validity is often challenging.

Bias in queries and the lack of viewpoint diversification introduce further lim-
itations. CIS systems frequently retrieve information reflecting narrow perspec-
tives, risking reinforcement of existing beliefs (Azzopardi, 2021). Approaches
like search result diversification, stance detection, and fairness metrics aim to
address these issues (Gao and Shah, 2020; Draws et al., 2021a), but synthesis
of this information into balanced responses remains an open challenge. A com-
prehensive view of the subject can be achieved by covering as many aspects
as possible in the diversified set of results (Gao and Shah, 2020). However, in
a conversational setup, we aim for the responses to be concise, resulting in a
trade-off between conciseness and completeness of the generated answer.

Limiting the responses to a few sentences can result in a significant conceal-
ment of underlying details such as the ranking of results and specifics about
the sources. These details are essential for users to assess the scope, novelty,
reliability, and topical relevance of the provided information (Xu and Chen,
2006). Since the user is provided only with a short textual response as the final
outcome of the generation process, it becomes the responsibility of the con-
versational system to identify and communicate any potential limitations to its
users, ensuring transparency and empowering users to evaluate response quality.
While the importance of explainability is broadly recognized for AI (Monroe,
2018) and has been extensively studied, for example, for decision support and
recommender systems (Nunes and Jannach, 2017; Zhang and Chen, 2020), it
has not received due attention for CIS systems.

Challenges described above are not new in the field of NLP or IA and differ-
ent solutions have been proposed for unanswerability detection in QA (Sulem
et al., 2022; Choi et al., 2018; Rajpurkar et al., 2018; Reddy et al., 2019) or
search result diversification (Jiang et al., 2018; Xu et al., 2017; Tian et al.,
2019). However, effectively integrating these techniques into CIS systems to
manage nuanced user information needs remains an open challenge.

2.3 Explainable AI

Explainability is a critical and active area of research in AI, particularly for
CIS systems aiming to convey vast amounts of information in their responses.
While these systems have made significant strides in generating and retrieving
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information, ensuring that users can understand and trust their outputs re-
mains a major challenge. According to established human-AI interaction design
guidelines (Amershi et al., 2019), explainable systems should first clarify their
capabilities, helping users grasp what the system can and cannot do. Next, they
should provide transparency regarding performance, indicating how likely the
system is to make mistakes. Finally, systems should offer explanations for their
actions, enabling users to understand the reasoning behind the system’s behav-
ior. However, explanations can have both positive and negative effects. They
may sometimes lead users to overtrust the system, even when it is wrong, or
form inaccurate mental models of how the system operates (Cau et al., 2023).
This effect is particularly evident for users with low domain expertise, who
may exhibit overconfidence in their decision-making or overreliance on the AI’s
suggestions.

2.3.1 Communicating Confidence and Capabilities
Various studies have explored how different explanation styles and interfaces
impact user understanding and interaction with AI systems. Both interactive
and “whitebox” explanations can improve user understanding of the system, with
the interactive approach showing higher effectiveness at the cost of being time-
consuming (Cheng et al., 2019). The effectiveness of explainability also depends
on factors like reasoning styles, and the presence of rationales or examples on
user trust and satisfaction (Cau et al., 2023; Tsai et al., 2021). Depending on the
task at hand and the domain of the system, explanations may come in different
forms, informing the user about system confidence, capabilities, limitations of
the system output, inner workings of the system, etc.

Confidence modeling has been extensively researched, with applications in
tasks such as machine reading comprehension, machine translation, and speech
recognition, as well as scenarios involving out-of-distribution inputs (Lakshmi-
narayanan et al., 2017; Niehues and Pham, 2019; Ovadia et al., 2019). Systems
can leverage predictive uncertainty to determine whether a question is answer-
able and abstain from generating responses when confidence is low to avoid
the dissemination of unreliable content (Wang et al., 2020). In conversational
search, uncertainty estimates can guide decisions between asking clarifying ques-
tions and providing potential answers (Aliannejadi et al., 2019; Penha and Hauff,
2021). Human studies have demonstrated that presenting confidence scores can
help calibrate user trust in AI systems, though effective decision-making often
requires users to bring complementary knowledge to address AI errors (Zhang
et al., 2020c). Advances in fine-tuning models to produce calibrated linguistic
expressions of uncertainty can further enhance the interpretability of system
confidence revealed to the user (Chaudhry et al., 2024).

Communication of the limitations and capabilities of AI systems is another
important component of explainability. Various methods, such as using natural
language messages, additional user interface elements, or granular confidence
scales, can help users understand the system’s constraints and reliability of
the provided output (Rechkemmer and Yin, 2022; Lu and Yin, 2021; Shani
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et al., 2013). Confidence reporting, particularly in the context of recommender
systems, enhances users’ ability to make informed choices (Shani et al., 2013).
Research on human-AI interaction emphasizes that both the confidence display
and the system’s demonstrated accuracy influence users’ trust and willingness to
rely on AI predictions (Rechkemmer and Yin, 2022). Transparency of the system
reliability cues presented to users is an enabler of trust judgments rather than
a guarantee of trust itself (Liao and Sundar, 2022). User trust judgments often
rely on heuristics rather than purely analytical judgments, leading to quick but
potentially flawed decisions and underscoring the need for thoughtful interaction
design and clear formulation of explanations (Liao and Sundar, 2022).

2.3.2 Evaluating Explanations
The evaluation of explanations in AI systems is multifaceted, focusing on metrics
related to trustworthiness, transparency, and reliability. Trustworthiness is of-
ten assessed through dimensions such as perceived ability of the system (Toader
et al., 2019), desire to use (Tsai et al., 2021), benevolence, and anthropomor-
phism (Toader et al., 2019), which gauge users’ confidence in the system’s inten-
tions and competence (Radensky et al., 2023; Liao and Sundar, 2022). Trans-
parency is measured by its impact on user awareness, perceived correctness,
interpretability, and accountability. These measures capture how well users
understand the system’s processes, outputs, and fairness (Rader et al., 2018).
Explanations improve awareness of system operations but may not always help
users evaluate the correctness or consistency of outputs (Rader et al., 2018). Re-
liability assessments consider the interplay between human intuition, perceived
competence, and reliance on AI systems. User’s reliance may be influenced by
their perceived competence or misconceptions about their own or the system’s
capabilities (He et al., 2023b; Chen et al., 2023).

2.4 Summary

This chapter has laid the theoretical and conceptual groundwork essential for
the research presented in this thesis. By surveying the evolution of informa-
tion access systems and key NLP tasks, it has provided the necessary context
for understanding the challenges and motivations behind conversational search.
Starting with classical and neural approaches to document retrieval, the chapter
established a foundation for the CIS baseline system discussed in Chapter 3. It
then introduced the principles of text representation and natural language mod-
eling, emphasizing their importance in facilitating more natural user-system in-
teractions. The chapter also delved into conversational search as a dynamic and
user-centric process. It reviewed key tasks such as conversational response gen-
eration and the evaluation of generated responses in the context of RAG. These
discussions directly inform the research presented in Chapters 4–6. Finally, we
addressed the growing importance of explainability in AI, particularly within
information access systems. By exploring existing approaches to developing and
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evaluating explainable components, we provided the necessary background for
the contributions in Chapter 7, which investigates strategies for making CIS
responses more transparent.



Part I

Understanding CIS Limitations
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Chapter 3

Establishing a Baseline

One learns from books and example only that
certain things can be done. Actual learning
requires that you do those things.

— Frank Herbert

The last few years have seen an acceleration of research on multi-turn, natu-
ral language, and long-term user modeling capabilities of search systems with an
attempt to make them more conversational (Zamani et al., 2023). The Conver-
sational Assistance Track at the Text REtrieval Conference (TREC CAsT) (Dal-
ton et al., 2019, 2020, 2021) has been a key enabler of progress in this area, by
providing a reusable test collection for conversational search. The task at TREC
CAsT is to identify relevant content from a collection of passages, “for conversa-
tional queries that evolve through a trajectory of a discussion on a topic” (Dalton
et al., 2021) (see Section 2.2.1). Over the years, query rewriting, passage re-
trieval, and passage reranking have emerged as the main components, which
are combined in a pipeline architecture. Clearly, the ranking components can
directly benefit from advances in dense/hybrid passage retrieval (Luan et al.,
2021), and are indeed critical to overall system performance. However, what
makes the task interesting from a conversational perspective, and different from
passage retrieval, is the problem of query rewriting (Kumar and Callan, 2020;
Lin et al., 2021; Vakulenko et al., 2021c; Yu et al., 2020; Mele et al., 2020).

In this chapter, we lay a solid foundation for the exploration and devel-
opment of advanced features and components of conversational information-
seeking (CIS) systems, which are covered in later chapters, by establishing
a strong CIS baseline for retrieval. Specifically, we address the following re-

36
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search question: What are strong baselines for passage retrieval in CIS
systems? (RQ1a).1 It has been shown that the best-performing systems
at TREC form a very competitive reference point for effectiveness compari-
son (Armstrong et al., 2009). This means that even if one’s ultimate research
interest lies in query rewriting, demonstrating strong absolute performance for
conversational search requires a high degree of effectiveness from all system com-
ponents. Our main objective is to reproduce (1) the best-performing baseline
provided by the track organizers (Dalton et al., 2021) and (2) the top-performing
(documented) system (Yan et al., 2021) from the 2021 edition of TREC CAsT.2
These two approaches are seen as representatives of a strong baseline and the
state of the art, respectively. It is worth noting that the system description
papers accompanying TREC submissions are not peer-reviewed and there is no
explicit or implicit reproducibility requirement making reproducibility particu-
larly challenging and a study such as this particularly insightful.

Both selected systems follow a two-stage retrieve-then-rerank pipeline archi-
tecture with queries rewritten based on conversational context. The baseline
system (Dalton et al., 2021) uses a fine-tuned query rewriting model fine-tuned
on CANARD (Elgohary et al., 2019), first-pass retrieval based on BM25, and
a pointwise reranker. The top participating system (Yan et al., 2021) uses a
different dataset for fine-tuning the query rewriting model and employs more
advanced ranking components: a combination of sparse-dense retrieval with
pseudo relevance feedback for first-pass retrieval, and pointwise/pairwise rerank-
ing. Since the two selected systems follow the same basic two-stage retrieval
pipeline, we perform additional experiments in order to better understand how
each pipeline component contributes to overall effectiveness. To shed light on
the generalizability of findings, we report results on both the 2020 and 2021
editions of TREC CAsT. Since the query rewriter influences the effectiveness
of both first-pass retrieval and reranking, we also perform experiments using a
different retrieval pipeline, which can utilize different query rewriting methods
for the two ranking stages. The reproducibility process offers valuable insights
and highlights the challenges of replicating systems submitted to TREC CAsT.
The experiments with different pipeline architectures and query rewriters help
us to better understand the main factors contributing to system performance.

All resources developed within this study (source code, runfiles) are available
under: https://github.com/iai-group/ecir2023-reproducibility.

1Baselines for response generation (RQ1b) are discussed in Section 6.3.2.
2We refer to the clarke-cc run by the WaterlooClarke group as the top-performing system

in this chapter. Note that the mono-duo-rerank run, submitted by the h2oloo group, achieves
higher performance (Dalton et al., 2021). However, it is not accompanied by a system de-
scription, making reproducibility impossible.

This chapter is based on the following paper:

Łajewska and Balog (2023a): From Baseline to Top Performer: A Repro-
ducibility Study of Approaches, ECIR ’23
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3.1 CAsT Systems Overview

We provide an overview of query rewriting approaches and ranking architectures
used at TREC CAsT (see Section 2.2.1 for more details about the track).

3.1.1 Query Rewriting
The goal of query rewriting is to handle common conversational phenomena
such as omission, coreference (Dalton et al., 2019), zero anaphora, topic change,
and topic return (Voskarides et al., 2020). Approaches can be broadly catego-
rized into unsupervised, supervised feature-based, and (weakly-)supervised neu-
ral methods. Unsupervised query rewriting methods expand the original query
with terms from the conversation history, for example, from previous utterances
based on BM25 score (Yilmaz et al., 2019), cosine similarity (Voskarides et al.,
2019), or other frequency-based signals (Lin et al., 2021). Supervised feature-
based methods use linguistic features based on dependency parsing, corefer-
ence resolution, named entity resolution, or part-of-speech tagging (Mele et al.,
2020). Supervised neural query rewriting approaches utilize large pre-trained
language models and in particular generative models such as GPT-2 (Vaku-
lenko et al., 2021a) or T5 model (Yan et al., 2021; Ju et al., 2021; Chang
et al., 2020). These models are fine-tuned on a conversational dataset, such
as CANARD (Vakulenko et al., 2021a; Lin et al., 2021; Ju et al., 2021; Chang
et al., 2020; Vakulenko et al., 2021c) or QReCC (Yan et al., 2021) (see Sec-
tion 2.2.1). The generated query reformulations may further be expanded with
terms from conversation history (Vakulenko et al., 2021a), with paraphrases (Ju
et al., 2021), or related sentences from semantically related documents (Chang
et al., 2020). Weakly supervised neural query rewriting methods aim to fine-
tune large pre-trained language models (Yu et al., 2020) or term selection clas-
sifiers (Kumar and Callan, 2020) with weak supervision data that is created
using rule-based or self-supervised approaches. The best results are reported
using a combination of term-based query expansion with generative models for
query reformulation (Kumar and Callan, 2020; Lin et al., 2021; Vakulenko et al.,
2021a).

3.1.2 Pipeline Architectures
Systems participating in TREC CAsT exhibit a wide variety of approaches,
not only in terms of component-level choices but also in terms of the overall
architectures of their ranking pipelines. The most common choice is a two-
stage retrieval pipeline with a query rewriting module. Different variants of this
cascade architecture include systems with the same rewriting method used for
both first-pass retrieval and reranking (Chang et al., 2020; Vakulenko et al.,
2021b; Yan et al., 2021; Ju et al., 2021; Vakulenko et al., 2021a; Yu et al.,
2020; Vakulenko et al., 2021c; Mele et al., 2020) (Figure 3.1a), different query
rewriting modules for both stages (Yang et al., 2019) (Figure 3.1b), or using
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Figure 3.1: Pipeline architectures for conversational search (Q+H: raw query
and conversational history; QR: query rewriter; R1: first-pass retriever; R2:
reranker; Enc.: encoder; Docs: document collection; Dot prod.: dot product).

rewriting only for first-pass retrieval (Gemmell and Dalton, 2020; Yang et al.,
2019).

More advanced architectures may use a two-stage retrieval pipeline with
the same query rewriter for each stage, but combine the scores obtained from
retrieval and reranking to produce a final ranking (Voskarides et al., 2019) (Fig-
ure 3.1c) or use two different versions of the rewritten query for first-pass re-
trieval and a fusion of the ranked lists for the reranking stage (Lin et al., 2021)
(Figure 3.1d). Another architecture variant consists of first-pass retrieval us-
ing the rewritten query, followed by a fusion of multiple contextualized passage
reranking of several different rewrites (Kumar and Callan, 2020) (Figure 3.1e).
An alternative to the retrieve-then-rerank approach is a few-shot conversational
dense retrieval system that learns contextualized embeddings of utterances and
documents in the collection, and scores documents solely using the dot product
of the embeddings (Yu et al., 2021) (Figure 3.1f).

3.2 Selected Approaches

We present the two approaches from TREC CAsT’21 that we aim to repro-
duce in this paper: (1) the best-performing official baseline provided by the
track organizers’ and (2) the top-performing documented system submitted by
participants. These approaches may be regarded as representatives of a strong
baseline and of the state of the art, respectively. Both may be seen as instanti-
ations of the basic two-stage retrieval pipeline approach (cf. Figure 3.1a), with
query rewriting, first-pass retrieval, and reranking components, as shown in Ta-
ble 3.1. In this section, we focus on a high-level description of these approaches,
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Table 3.1: Overview of approaches reproduced in this chapter.

Query rewriting First-pass retrieval Reranking

BaselineOrganizers T5 fine-tuned on CANARD BM25 monoT5

WaterlooClarke T5 fine-tuned on QReCC BM25 with PRF + ANCE mono/duoT5

based on the corresponding TREC papers; specific implementation details are
discussed in Section 3.3.

3.2.1 Organizers’ Baseline
Of the several baselines provided by the track organizers, org_auto_bm25_t5
was the best-performing run (Dalton et al., 2021); this will be referred to as the
BaselineOrganizers approach henceforth. The query rewriting component is
using T5 fine-tuned on CANARD for generative query rewriting. The rewriter
uses all previous queries and the three previous canonical responses as context.
For first-pass retrieval, BM25 is used to collect the top 1000 documents from
the collection. The documents are reranked with a pointwise (mono) T5 model
trained on MS MARCO (Campos et al., 2016).

3.2.2 Top Performer: WaterlooClarke
The top-performing documented system was the clarke-cc run by Yan et al.
(2021); this will be referred to as the WaterlooClarke approach henceforth.
The query rewriting component is based on a T5 model that is fine-tuned on the
QReCC dataset (Anantha et al., 2021). For context, the rewriter uses previously
rewritten utterances and the last canonical result. First-pass retrieval comprises
two sub-components: a sparse and a dense retriever. The sparse retriever utilizes
a BM25 with pseudo-relevance feedback (PRF), with the parameters tuned to
maximize recall. PRF is run over both the target corpus and the C4 corpus.3
The dense retriever is based on the ANCE approach (Xiong et al., 2020). Both
retrieval systems return the top 1000 documents that are merged into one final
ranking. Reranking is performed using a pointwise T5 reranker, followed by
another reranking of the top 50 documents, using pairwise duoT5 (Pradeep
et al., 2021).

3.3 Reproducibility Experiments

In this section, we seek to answer the question: Can the organizers’ baseline and
the best performing system at the TREC CAsT’21 be reproduced? We describe
the implementation details of the two systems and discuss their end-to-end

3https://huggingface.co/datasets/allenai/c4
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performance with respect to the results reported in the track overview (Dalton
et al., 2021).

3.3.1 Baseline Implementation
We base the implementation solely on the description of the track organizers’
org_auto_bm25_t5 baseline in the overview paper (Dalton et al., 2021), without
resorting to additional communication with the authors.

The passage collection is indexed using Elasticsearch, using the built-in an-
alyzer for tokenization, stopwords removal, and KStem stemming. For query
rewriting, we use a pre-existing T5 model that has been fine-tuned on the CA-
NARD dataset (castorini/t5-base-canard).4 Our implementation is based
on the Hugging Face transformers library.5 According to (Dalton et al., 2021),
the context for the query rewriter is of the form:

q1, q2, . . . , qi−3, ri−3, qi−2, ri−2, qi−1, ri−1, qi,

where qi and ri are the ith raw query and canonical response, respectively.
Contexts exceeding the allowed model input length are not handled. This,
however, can result in trimming the input in a way that the raw query that is to
be rewritten is removed. To increase the quality of the rewriting by ensuring the
correct form of the input and benefiting from previous rewrites, we alternatively
use:

q̂1, q̂2, . . . , q̂i−1, trim(ri−1), qi,

where q̂i is the ith rewritten query and trim is a function that cuts the canonical
response if the length of the input is longer than the capacity of the model. For
first-pass retrieval, the passages are ranked using BM25 on a catch_all field
(concatenating the title and body fields) in the 2021 index and on the body field
for the 2020 index. We initially used the parameters reported by the organizers
(k1=4.46, b=0.82), but then achieved better results with the default parameters
(k1=1.2, b=0.75). The top 1000 candidates for each turn are reranked using
the T5 model introduced by Nogueira et al. (2020), which has been published
on Hugging Face (castorini/monot5-base-msmarco).6

3.3.2 WaterlooClarke Implementation
We base our implementation on the WaterlooClarke group’s TREC paper (Yan
et al., 2021). Additional information on specific details was obtained from the
authors via email communication and inferred from the implementation made
available.7

4https://huggingface.co/castorini/t5-base-canard
5https://github.com/huggingface/transformers
6https://huggingface.co/castorini/monot5-base-msmarco
7https://github.com/claclark/Cottontail/blob/main/apps/treccast21.cc
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The approach requires two indices: an approximate nearest neighbor (ANN)
index for ANCE dense retrieval and an inverted index for BM25. The authors
use ANCE’s own implementation8 and a publicly released model checkpoint
(passage ANCE(FirstP)) for the ANN index.† We use Pyterrier’s plugin9 for
creating the ANN index, which is based on the original paper, and allows for
easier integration with other modules in our pipeline. For building the ANN
index we use MS MARCO Passage and TREC CAR collections provided by the
ir_datasets package,10 and implement our own generator for the WaPo 2020,
MS MARCO Documents, and KILT collections. No additional preprocessing is
performed when building the dense retrieval index. The inverted index used by
BM25 is the same as in Section 3.3.1.

The query reformulation step in WaterlooClarke is based on a T5 model
trained on the QReCC dataset (Anantha et al., 2021). All the previous rewritten
utterances and the canonical response for the last utterance are used as context
to reformulate the current question, i.e., the input is given as:

q̂1, q̂2, . . . , q̂i−1, trim(ri−1), qi.

If the length of the input sentence exceeds 512, the answer passage is cut off.†
The authors fine-tune a pretrained t5-base model11 with the training partition
of the QReCC dataset for 3 epochs, using the original test partition as a valida-
tion set.† The train batch size is equal to 2 and the learning rate is 5×10−5.† We
use the Simple Transformers library12 for the fine-tuning procedure (as opposed
to PyTorch Lightning13 and Hugging Face transformers used by the authors†).

There are two first-pass rankers involved: (1) sparse retrieval using BM25
with pseudo relevance feedback (PRF) and (2) dense retrieval using ANCE
(Xiong et al., 2020). The final sparse retrieval ranking is a fusion of two
rankings.† PRF is applied on the top 17 documents to expand the query with
the top 26 terms; the expanded query is then scored using BM25 to generate the
first sparse ranking. Additionally, the authors use the top 16 weighted answer
candidates generated by a statistical question-answering method ran against the
C4 corpus to create the second ranking (answer candidates are used by BM25).†
The first and the second ranking produced by the sparse retrieval are fused with
Reciprocal Rank Fusion (RRF) (Cormack et al., 2009).† There is no further in-
formation disclosed about the question-answering system used (neither in the
paper nor in the GitHub repository). Therefore, we skip the second ranking in
reproducibility and focus on standard BM25 with PRF. The BM25 parameters

8https://github.com/microsoft/ANCE
†Missing information provided by the authors in personal communication.
9https://github.com/terrierteam/pyterrier_ance

10https://github.com/allenai/ir_datasets
11https://huggingface.co/t5-base
12https://simpletransformers.ai/
13https://www.pytorchlightning.ai/
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Table 3.2: Reproducibility experiments on the TREC CAsT’21 dataset. The
results from Dalton et al. (2021) are indicated with [*].

Approach R@500 MAP MRR NDCG NDCG@3

BaselineOrganizers@TREC’21 [*] 0.6360 0.2910 0.6070 0.5040 0.4360

BaselineOrganizers-QR-BM25 0.5632 0.2268 0.4947 0.4317 0.3457

BaselineOrganizers-BM25 0.5894 0.2546 0.5405 0.4672 0.3966

BaselineOrganizers 0.6472 0.2628 0.5354 0.4885 0.3968

WaterlooClarke@TREC’21 [*] 0.8690 0.3620 0.6840 0.6400 0.5140

WaterlooClarke@TREC’21 (runfile) 0.8534 0.3494 0.6626 0.6240 0.4950

WaterlooClarke reproduced by us 0.6915 0.2864 0.5712 0.5176 0.4151

are tuned to maximize recall over manually rewritten questions from previous
years. The exact details of this remain unclear. We tune BM25 parameters on
our 2020 and 2021 indices and take the average of the best parameters found for
each year (b=0.45, k1=0.95) since the parameters used in their code (b=0.45,
k1=1.18) gave worse results on our indices. For query expansion, since the
choice of PRF algorithm could not be resolved, we opted for RM3 (Lavrenko
and Croft, 2001), which we implemented from scratch.

The results of sparse and dense retrieval are fused to generate the final set of
1000 candidate passages for reranking. Since the fusion method is not stated in
the paper, we assume that this step also employs RRF; we utilize the TrecTools
library,14 which implements a RRF as defined in (Cormack et al., 2009).

The reranking stage in this approach is based on a pointwise monoT5 reranker
(on all candidate passages), followed by a pairwise duoT5 reranker (on the top
50 passages reranked by monoT5). The original reranking implementation is
based on the Pyaggle library15 with the default model checkpoints. Our imple-
mentation of duoT5 is based on the Hugging Face transformers library and the
castorini/duot5-base-msmarco model published on Hugging Face.16

3.3.3 Results
Table 3.2 reports our results on the CAsT’21 collection. Following the official
setup, we consider measures with both binary and graded relevance. The main
measure is NDCG@3; other measures are computed with a rank cutoff of 500.
For binary measures, we apply a relevance threshold of 2.

For the baseline, the results reported in the overview paper (Dalton et al.,
2021) are included verbatim and regarded as the reference, since the raw run-
file (org_auto_bm25_t5) is not available in the TREC archive. We include
results using the original query rewriting method and reported BM25 param-

14https://github.com/joaopalotti/trectools
15https://github.com/castorini/pygaggle
16https://huggingface.co/castorini/duo5-base-msmarco
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eters (BaselineOrganizers-QR-BM25), using the improved query rewriter while
keeping the reported BM25 parameters (BaselineOrganizers-BM25), and finally
using the improved query rewriter with default BM25 parameters (BaselineOr-
ganizers). We find that the latest variant performs best; it is still 9% below the
reference result in terms of NDCG@3, but 2% better in terms of Recall@500.

Regarding WaterlooClarke, the performance of our reproduced system is
19% lower in terms of NDCG@3 and 20% lower in terms of Recall@500 than the
official results reported for this approach. The discrepancy in the results is most
likely caused by the lack of the C4-based question-answering step performed in
first-pass retrieval. This element of the system is not sufficiently described in the
paper nor has been resolved via personal email communication. Surprisingly, we
observe discrepancies between the official results reported in the overview paper
and a direct evaluation of the clarke-cc runfile taken from the TREC archive
(cf. rows 5 vs. 6 in Table 3.2). The latter results are lower, with a relative
drop of almost 4% in NDCG@3, which is a non-negligible difference. We cannot
explain this discrepancy; however, it also puts into question the results reported
in the track overview. When comparing our reproduced results against their
runfile, the relative differences are under 16% and 19% in terms of NDCG@3
and Recall@500, respectively.

Overall, according to the track overview paper, the relative differences be-
tween BaselineOrganizers and WaterlooClarke are 18% and 37% in terms of
NDCG@3 and Recall@500, respectively (cf. rows 1 vs. 5 in Table 3.2). How-
ever, the respective differences in our reproduced approaches are 5% and 7% (cf.
rows 4 vs. 7 in Table 3.2). Moreover, these differences are no longer statistically
significant, based on a paired t-test with p < 0.05. The same test does indicate
significant differences when performed against the WaterlooClarke runfile.

3.3.4 Summary
In summary, neither approach could be fully reproduced due to key information
missing. In the case of BaselineOrganizers, the specifics of the models used
for query rewriting and reranking were lacking, and the formulation of input
sequences for query rewriting was underspecified (esp. with regards to exceed-
ing the length limits of the model). As for WaterlooClarke, the complexity of
the system and shortages in technical details made it impossible to fully im-
plement the system. Most notably, the involvement of a question-answering
system for sparse retrieval is not even mentioned in the paper. We do want
to acknowledge the kind, helpful, and open communication by the authors via
email, which allowed us to resolve questions around the query rewriting model
and its parameters, the BM25 and PRF parameters used, and the rank fusion
method employed. Nevertheless, after several rounds of email exchanges, we are
still missing details about the PRF algorithm, the question-answering system
employed, the exact approach used for tuning the BM25 parameters, the pre-
processing employed for the inverted index, and the method used for combining
sparse and dense rankings. It is also worth noting that while BM25 parameters
were shared for both approaches, those parameters were not the optimal ones
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Table 3.3: Variants of a two-stage retrieval pipeline on TREC CAsT’20 and ’21.
T5_C and T5_Q indicate T5-based query rewriters trained on CANARD and
QReCC datasets, respectively. m/dT5 stands for mono/duoT5 reranker.

TREC CAsT’20

Approach R@1000 MAP MRR NDCG NDCG@3

T5_C + BM25 + monoT5 0.5276 0.2191 0.5457 0.4353 0.3789

T5_Q + BM25 + monoT5 0.5100 0.2056 0.5106 0.4065 0.3618

T5_C + ANCE/BM25 + m/dT5 0.6781 0.2540 0.5512 0.5027 0.4052

T5_Q + ANCE/BM25 + m/dT5 0.6449 0.2443 0.5357 0.4804 0.4061

T5_C + ANCE/BM25/PRF + m/dT5 0.6878 0.2555 0.5541 0.5063 0.4086

T5_Q + ANCE/BM25/PRF + m/dT5 0.6608 0.2451 0.5355 0.4840 0.4052

TREC CAsT’21

Approach R@500 MAP MRR NDCG NDCG@3

T5_C + BM25 + monoT5 0.6472 0.2628 0.5354 0.4885 0.3968

T5_Q + BM25 + monoT5 0.6018 0.2530 0.5369 0.4670 0.3933

T5_C + ANCE/BM25 + m/dT5 0.7259 0.2886 0.5575 0.5316 0.4068

T5_Q + ANCE/BM25 + m/dT5 0.6799 0.2843 0.5702 0.5135 0.4159

T5_C + ANCE/BM25/PRF + m/dT5 0.7306 0.2915 0.5573 0.5330 0.4061

T5_Q + ANCE/BM25/PRF + m/dT5 0.6915 0.2864 0.5712 0.5176 0.4151

for us, which is likely due to differences in document preprocessing. It, however,
means that BM25 parameters alone, without further details on preprocessing or
collection statistics, are only moderately useful. We shall reflect more generally
on some of these challenges and possible remedies in Section 3.6.

3.4 Additional Experiments

We have reproduced two approaches, BaselineOrganizers and WaterlooClarke,
which follow the same basic two-stage retrieval pipeline (cf. Figure 3.1a), but
differ in each of the query rewriting, first-pass retrieval, and reranking compo-
nents. We experiment with different configurations of this basic pipeline to un-
derstand which changes contribute most to overall performance (Section 3.4.1).
Additionally, we consider a different pipeline architecture (Section 3.4.2). In
both sets of experiments, we are interested in the generalizability of findings,
therefore we also report results on the TREC CAsT’20 dataset. (Note that the
rank cut-off for the 2020 collection is 1000, while for 2021 it is 500.)

3.4.1 Variants of a Two-Stage Retrieval Pipeline
In this experiment, we gradually switch out the components of a baseline sys-
tem (BaselineOrganizers) with components of a state-of-the-art system (Water-



CHAPTER 3. ESTABLISHING A BASELINE 46

Table 3.4: Performance of query rewriting approaches with different variants of
the two-stage pipeline on the TREC CAsT’20 and ’21 datasets. The highest
scores for each year are in boldface.

R2

T5_CANARD T5_QReCC

Recall NDCG@3 Recall NDCG@3

R1

T5_CANARD
2020: 0.6878 2020: 0.4086 2020: 0.6878 2020: 0.3923

2021: 0.7306 2021: 0.4061 2021: 0.7267 2021: 0.4166

T5_QReCC
2020: 0.6608 2020: 0.4086 2020: 0.6608 2020: 0.4052

2021: 0.6879 2021: 0.4176 2021: 0.6915 2021: 0.4151

looClarke). The results are presented in Table 3.3; the first and last rows within
each block correspond to BaselineOrganizers and WaterlooClarke, respectively.
Our observations are as follows. First, when changing the dataset used for train-
ing the T5-based query rewriter from CANARD to QReCC (rows 1 vs. 2, 3 vs.
4, and 5 vs. 6 in Table 3.3) we observe a noticeable drop (3%–7%) in terms
of recall, with smaller differences in NDCG@3 (below 2%, with one exception).
Second, using more advanced retrieval methods (ANCE/BM25 instead of BM25
for first-pass ranking and mono/duoT5 instead of monoT5 for reranking; rows
1 vs. 3 and 2 vs. 4 in Table 3.3) does yield consistent improvements across met-
rics and datasets: +12%–29% in recall and +3%–12% in NDCG@3. Finally,
using pseudo relevance feedback for first-pass retrieval (rows 3 vs. 5 and 4 vs.
6 in Table 3.3) results in small but consistent improvements in terms of recall
(1%–2%) with negligible differences in NDCG@3 (<1%). It should be noted
that none of the above differences are statistically significant, thereby the re-
sults are merely indicative. However, in terms of overall trends, our results are
in line with the tendencies reported by Yan et al. (2021). Namely, that adding
PRF and combining sparse and dense retrieval methods for first-pass retrieval
improves performance.

3.4.2 Using a Different Pipeline Architecture
It is clear that query rewriting has a direct impact on both ranking steps: first-
pass retrieval (R1) and reranking (R2). Still, it remains to be seen whether the
two stages are impacted in the same way. The basic two-stage retrieval pipeline
(cf. Figure 3.1a) uses the same query rewriter for both ranking stages and
therefore cannot be used to answer this question. We thus switch to a different
pipeline architecture—one that uses a different query rewriter component for
R1 and R2, but is identical to the basic pipeline in the ranking components (cf.
Figure 3.1b).

Table 3.4 presents the results for the possible four-way combinations of query
rewriters, T5_CANARD and T5_Q, and ranking stages, R1 and R2. The rank-
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ing components follow the WaterlooClarke approach (i.e., using T5_QReCC
for both R1 and R2 corresponds to the last row in Table 3.3). The results
reveal some interesting tendencies that generalize across both datasets (even
though the differences are not statistically significant). Using T5_CANARD
for first-pass retrieval results in the highest recall. However, the overall best
combination in terms of final ranking (NDCG@3) is when T5_QReCC is em-
ployed in first-pass retrieval and T5_CANARD is used in reranking. Overall,
we observe meaningful relative improvements for recall (up to 6%) and negligible
improvements for NDCG@3 (≤1%) on both datasets over the WaterlooClarke
approach.

3.5 Reflections on Reproducibility of TREC Sys-
tems

TREC papers can range anywhere from vague system descriptions to full-fledged
research papers, which can make reproducibility a real challenge; this has cer-
tainly been the case for this study. We acknowledge that reproducibility is not a
requirement for TREC submissions. Still, since they are often used for reference
comparison in terms of absolute system performance on a given test collection,
cf. (Armstrong et al., 2009), it is worth considering how easy or difficult it is
to reproduce them. Specifically, we have selected two approaches for our study:
the best performing baseline by the track organizers and the best performing
participant submission (that was accompanied by a paper) from the 2021 edi-
tion of TREC CAsT. We have decided against personal communication with
the track organizers (thus implicitly subjecting them to a higher virtual bar-of-
standard) while making the best effort to resolve any missing details with the
participant team over email.

Generally, key missing information includes the names of specific algorithms
and models used and detailed-enough descriptions of procedures of constructing
inputs to neural models and ways of obtaining models’ parameters. We wish to
note that sharing model parameters in some cases is not enough; consider, e.g.,
the simple case of BM25, where the length normalization parameter alone is
not meaningful if collection statistics markedly differ due to how the collection
is preprocessed. Given that multi-stage ranking architectures are common at
TREC CAsT, but also beyond that, sharing intermediate results from the dif-
ferent components would be immensely valuable. These could include rewritten
or expanded queries, a set of candidate document IDs, and intermediate docu-
ment rankings. Sharing them would not only support reproducibility but also
facilitate component-level evaluation.

We attempted to clarify the discrepancies between the results in this paper
and those reported in the track overview via email communication with the track
organizers. There is a difference in tooling: they used Pyserini17 for building
the index, while we used Elasticsearch. Differences in collection preprocessing

17https://github.com/castorini/pyserini
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(tokenization, stemming, stopword removal, etc.) may contribute to the gap in
the results. Regarding the runfile, we were pointed to the track’s GitHub repos-
itory18 containing the raw runfile (org_automatic_results_1000.v1.0.run).
However, evaluating this runfile against the official qrels still yields results dif-
ferent from those reported in the track overview paper (in parentheses): Re-
call@500 is 0.623 (vs. 0.636), MAP is 0.282 (vs. 0.291), and NDCG@3 is
0.424 (vs. 0.436). This is “in alignment” with the case of the WaterlooClarke
(clarke-cc) runfile, in the sense that there is a mismatch between the numbers
reported in the track overview paper and the evaluation of the actual runfiles
(with the latter being lower).

3.6 Conclusions

In this chapter, we have attempted to reproduce approaches for the task of
conversational passage retrieval, in the context of TREC CAsT. Overall, our
reproducibility efforts have met with moderate success. Surprisingly, we have
managed to come closer to reproducing the participant’s submission (Water-
looClarke) than the organizers’ baseline. In the case of the former, there is a
missing sparse retrieval component that can well explain the difference. As for
the organizers’ results, the discrepancies between the reported results in the
track overview paper and the actual runfiles found in the TREC archive would
be worth a follow-up investigation.

Since both reproduced systems follow the same basic two-stage retrieval
pipeline, we conducted additional experiments to explore different configura-
tions of this pipeline. Our results align with previous research (Yan et al., 2021),
demonstrating that more advanced retrieval models consistently improve per-
formance across metrics and datasets, while incorporating relevance feedback in
the first-pass retrieval yields small but consistent gains in recall and NDCG@3.
Additionally, we experimented with various combinations of query rewriting
methods within a different retrieval pipeline, showing that applying different
methods at different stages can be beneficial. In answer to RQ1a (What are
strong baselines for passage retrieval in CIS systems?), we have found that
a combination of sparse and dense retrieval with pseudo relevance feedback for
first-pass retrieval and pointwise/pairwise for reranking preceded by a fine-tuned
query rewriting component represents a strong baseline for the conversational
passage retrieval system. With a strong retrieval baseline established, the next
step is to explore techniques that transition the system’s output from ranked
passages to a truly conversational, coherent, and informative natural language
response.

18https://github.com/daltonj/treccastweb/tree/master/2021/baselines



Chapter 4

Limitations of CIS Systems

Good judgment comes from experience, and
experience - well, that comes from poor
judgment.

— Alan Alexander Milne

Conversational information-seeking (CIS) research currently centers on re-
trieval components, such as passage retrieval, reranking, and query rewriting
(see Chapter 3). However, the core difficulty lies in effectively assembling the
retrieved information into a trustworthy and reliable conversational response
that the user will ultimately interact with. The task of synthesizing information
from the top retrieved passages into a single response is called conversational
response generation (Ren et al., 2021). Unfortunately, generated responses are
susceptible to limitations, including hallucinations when no answer is found (Ji
et al., 2023), biased responses only partially answering the question (Gao and
Shah, 2020), or factual errors (Tang et al., 2023). These limitations potentially
lead to inaccuracies, pitfalls, and biases, which may not always be evident to
users, particularly those who lack familiarity with the search topic or the neces-
sary background knowledge. As individuals without specific training can only
distinguish between human-generated and auto-generated texts at a level close
to random chance (Clark et al., 2021), factually incorrect, unsupported, biased,
or incomplete information may be easily overlooked.

This chapter investigates users’ ability to recognize pitfalls in CIS systems
related to query answerability and response incompleteness by addressing the
following research question: Which limitations in the responses are de-

49
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tectable by users? (RQ2.1); see Table 4.1 for illustrative examples. We
hypothesize that untrained users cannot identify these problems in CIS interac-
tions. More specifically, we aim to answer the following questions:

• RQ2.1a: Can users effectively recognize the problem of query answer-
ability and the problem of multiple viewpoints leading to response incom-
pleteness in system responses?

• RQ2.1b: How do inaccurate, incomplete, and/or biased responses impact
the user experience?

We design and conduct two crowdsourcing-based studies to determine whether
users can effectively recognize these two problems in responses based on a subset
of topics from the TREC Conversational Assistance (CAsT) datasets (Dalton
et al., 2020; Owoicho et al., 2022) with inaccuracies or biases manually injected
in a controlled manner.

Query answerability can be defined at different levels, which includes deter-
mining whether the answer is present within the top relevant passages, the entire
corpus, or general world knowledge. Additionally, when “no answer found” is the
outcome, the system must transparently reveal this to the user and suggest ways
to continue the conversation. In this chapter, we focus on (i) the consequences
of generating responses from passages that do not contain the answer, which
results in non-factual or hallucinated content, and (ii) the impact of source pre-
sentation. The variants of responses in the answerability study (i.e., study one)
differ in factual correctness (Kryscinski et al., 2020) and the presence/validity
of the information source (Bolotova-Baranova et al., 2023; Liu et al., 2023a).

The issue of response incompleteness encompasses a range of challenges,
such as presenting biased information that covers only one facet or viewpoint,
determining which pieces of information to include given response length limita-
tions, and transparency regarding the relevant information not covered. In this
chapter, we focus on the subtask of viewpoint/facet diversification and examine
the impact of balanced viewpoint coverage in responses. The variants of the
responses in the viewpoints study (i.e., study two) vary in diversity (in terms
of viewpoints and/or facets) (Helberger et al., 2018) and balance in covering
various viewpoints/facets in the response.

The resources developed in this study, including the manually generated CIS
responses and scripts for data analysis are made publicly available at https:
//github.com/iai-group/sigirap2024-resgen. Additional results from the
user studies are available in Appendix A.

This chapter is based on the following paper:

Łajewska et al. (2024a): Can Users Detect Biases or Factual Errors in
Generated Responses in Conversational Information-Seeking?, SIGIR-AP
’24
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Table 4.1: Example problems of query answerability and response incomplete-
ness: the first response contains factual errors and is based on sources that do
not provide an answer to the question (Malbec wine is not produced in Penedès,
Spain). The second response mentions multiple viewpoints, but only one is cov-
ered in detail, resulting in a biased answer.

Query Answerability Response Incompleteness

To combine hiking and Malbec wine,
plan a trip to the Penedès region
in Catalonia. You can explore the
Montserrat mountain range, which
offers fantastic hiking opportunities,
and then visit renowned wineries in
the Penedès, known for its excep-
tional Malbec wine production. . .
https://www.winetourism.com/wine-t
asting-tours-in-penedes/

The Watergate scandal had a profoundly negative im-
pact on President Nixon’s legacy, overshadowing many
of his domestic achievements. It tarnished his repu-
tation as a corrupt politician, making him a symbol of
political scandal and misconduct in both American pol-
itics and popular culture. While he did enact significant
legislation like creating the Environmental Protection
Agency, his presidency is primarily remembered for the
scandal, leading to his resignation and becoming syn-
onymous with political corruption and disgrace.

4.1 Related Work

CIS responses aim to synthesize information from multiple sources while balanc-
ing conciseness and completeness (see Section 2.2.2). One of the primary expec-
tations from generated responses is to equip users with the necessary tools for
assessing the reliability and accuracy of the provided information (Liu, 2023).
While generative language models enhance the fluency of the generated text,
issues such as hallucinations, biases, unanswerability, and source subjectivity
affect the reliability of response (see Section 2.2.4). Given the potential flaws
that may result from these challenges, conversational response generation should
involve system revealment and promote a more informed user experience (Az-
zopardi et al., 2018; Radlinski and Craswell, 2017).

Evaluating response quality in CIS systems presents unique challenges, as
traditional offline evaluation measures like ROUGE (Lin, 2004) and NDCG
(Järvelin and Kekäläinen, 2002) fail to fully capture the complexities of con-
versational context, multi-turn dialogue coherence, and the overall user expe-
rience in conversational interactions. Evaluating CIS responses from a user
perspective involves multiple dimensions (Sakai, 2023), including trust and fair-
ness (Zamani et al., 2023), credibility (Bink et al., 2022), reliability (Lu and
Yin, 2021; Rechkemmer and Yin, 2022), verifiability (Liu et al., 2023a), factual
correctness, transparency (e.g., information sources, ranking, and consolidation
process) (Shah and Bender, 2022), relevance, naturalness, conciseness (Owoicho
et al., 2022), informativeness (supporting user in increasing their information lit-
eracy) (Shah and Bender, 2022), perceived satisfaction, and usefulness (ter Ho-
eve et al., 2022; Zheng et al., 2022; Cambazoglu et al., 2021) (see Section 2.2.3).
However, directly asking users to assess these dimensions may not be reliable
as users may interpret the concepts differently (the problem of indirect observ-
ables) (Kelly, 2007).
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4.2 Methodology

We aim to investigate if users can recognize inaccuracies in CIS system responses
and how these inaccuracies impact the user experience—hereafter, we use re-
sponse to refer to CIS system response. We conduct two crowdsourcing studies
employing a within-subject design that investigates the problems of:

• Query answerability through an answerability study with the focus on factual
errors and quality of the information sources accompanying the response.

• Response incompleteness through a viewpoints study with the focus on the
balance of viewpoints and/or facets in the response.

For each study, we select ten queries susceptible to one of the identified problems
(i.e., answerability or incompleteness). For each query, we manually create
response variants differing in terms of two controlled dimensions (1) factual
correctness and (2) source presence/validity in the answerability study ; and (1)
facet/viewpoint diversity and (2) balanced facet/viewpoint presentation in the
viewpoints study . Workers are presented with a set of queries with responses
and asked to indicate their perception of the controlled dimensions listed above,
as well as their overall satisfaction. We consider a simplified scenario involving
a set of topics that are particularly susceptible to these issues, and we manually
introduce isolated, easily detectable errors. We acknowledge that in real-world
conversations such errors are likely to be much harder to identify. This chapter
presents only a preliminary study, and exploring more realistic and complex
scenarios is left for future work.

We aim to investigate users’ ability to detect pitfalls in responses in a scenario
that closely mirrors real-life system interactions. In actual situations, a user
poses a query, receives a single system response, and must then judge whether
this response is useful and satisfying. To replicate this setting, we provide each
worker with a set of identical queries and a single version of the response for
each query. This way, we may include different variants of the response in one
task without the differences being too conspicuous when all possible variants
of the response for a given query are presented consecutively. These response
sets are carefully balanced in terms of accuracy, ensuring that users encounter
in their microtasks—hereafter, Human Intelligence Tasks (HITs)—responses of
different quality, without those differences being overly apparent.

4.2.1 Experimental Design
Crowd workers are presented with ten query-response pairs in each HIT and
asked to assess the provided responses. Responses differ in their quality and
accuracy along different controlled dimensions. Each response is an instance of
one of the experimental conditions. In the answerability study , we consider four
different experimental conditions ECA (resulting in four response variants for
each query), and in the viewpoints study , three ECV (with three response vari-
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Attentiveness check

CIS interaction $i$ (1..10)

HIT instructions

Topic familiarity

Response assessment (Part I)

User experience (Part II)

Demographic information

a)

b)

c)

Query
CIS system response

HIT

Figure 4.1: High-level design of the user studies.

ants for each query). The experimental conditions of manually crafted responses
for both user studies are described in Section 4.3.1.

Both our studies follow the Graeco-Latin square design, which ensures the ro-
tation and randomization of queries and response variants, as well as no overlap
in sets of query-response pairs between HITs (Kelly, 2007). Each query-response
pair appears in three different HITs, where each HIT contains a different set of
ten query-response pairs. Query-response pairs appear in the HITs in a random
order. Considering grouping factors that arise whenever one annotator rates
multiple responses, we ensure that each crowd worker completed only a single
HIT for a given user study (but they were allowed to participate in both user
studies). This way, we attempt to balance the need for a large enough annotator
pool with a sufficient task size to be worthwhile to the crowd workers (Steen
and Markert, 2021).

4.2.2 Tasks
The designs of the answerability study and the viewpoints study follow the same
principle: workers are asked to complete one HIT, consisting of ten query-
response pairs. The task consists of (a) HIT instructions; (b) ten CIS inter-
actions; and (c) demographics questionnaire as seen in Figure 4.1. Workers
are not given specific examples of query-response pairs in the instructions to
avoid biasing them. We decompose each user study into multiple subsections
using independent CIS interactions to facilitate atomic microtask crowdsourc-
ing (Gadiraju et al., 2015). Each CIS interaction contains one query-response
pair, followed by (1) a corresponding attentiveness check, (2) a measurement of
the worker’s familiarity with the topic, (3) a CIS response assessment (Part I) ,
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Attentiveness check

Topic familiarity

Response assessment
(Part I)

User experience
(Part II)

Query

Answerability user study Viewpoints user study

- Query: How do you get impartial
results from search engine?

- System’s response: To obtain
impartial search engine results ...

- Query: What was the US reaction to the
Black Lives Matter movement?

- System’s response: The U.S. reaction to
the Black Lives Matter movement  ...

- Overall, how factually correct
do you find the response
provided by the system?

- To what extend do you have
confidence in the accuracy of
the system’s response?

- To what extend do you think that the
provided answer is diverse in terms of
different viewpoints and/or aspect of the
topic?

- How transparent in the response in
articulating different viewpoint or
aspects of the topic?

- To what extent does the response
provide an unbiased (or balanced)
perspective on the topic?

- How satisfied are you overall with the answer?

- Explain your level of satisfaction with answer

CIS Interaction

- Which sentence is the most accurate summary of the provided answer?

- On the scale from 1 to 4, how familiar are you with the topic of the question?

CIS system response

Figure 4.2: Questions provided to crowd workers in our user studies.

and (4) a measurement of user experience (Part II).1 The wording of the ques-
tions in all parts of the user studies follows questions proposed by Tang et al.
(2022) for evaluating the factual consistency of summaries (see Figure 4.2).
Both studies finish with a short demographics questionnaire asking workers’
age, education level, and gender.

Attentiveness Check We present workers with an additional question for
each CIS interaction for which we have a ground truth answer to serve as an
attention check, which enables us to detect poorly performing workers, cheat
submissions, or bots (Gadiraju et al., 2015). Each attention check question
consists of three sentences related to the query’s topic, one of them being a
summary of the provided response. Sentences are provided in a random order
and workers are asked to select the best summary (Bolotova-Baranova et al.,
2023). Submissions that failed on more than 3/10 attentiveness questions were
rejected.

Topic Familiarity In this part of the CIS interaction task, crowd workers are
asked to rate their familiarity with the query topic to help us assess the task
difficulty and condition the collected data on users’ background knowledge (Kr-
ishna et al., 2021).

Part I: Response Assessment In Part I, workers are asked to evaluate the
dimensions of the response presented for a given query. Since we are investi-

1The only difference between the answerability study and viewpoints study are the response
dimensions for which we are collecting crowd workers’ ratings in Part I.
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Table 4.2: Controlled vs. user-judged response dimensions.

User Study
Response Dimension

Controlled User-judged

Answerability
(1) Factual Correctness Factual Correctness

(2) Source Presence/Validity Confidence in Answer Accuracy

Viewpoint
(1) Diversity Diversity + Transparency

(2) Balance Balance/Bias

gating different response dimensions for the answerability study and viewpoints
study , each study’s response assessment part is different. The questions asked
per study are related to the dimensions we identified for each problem and are
answered by workers on four-point Likert scales. To increase the ecological va-
lidity of our experiments (and avoid making the assessment task too artificial),
the dimensions used to control the generation of response (controlled response
dimensions) do not always directly map to the dimensions that workers are
asked to assess (user-judged response dimensions) (see Table 4.2). In the case
of response dimension (2) in the answerability study (source presence/validity),
simply asking workers whether the source is present or the link is valid would
be too apparent and would violate the user study by directly suggesting some
specific user behavior (i.e., clicking the link). Therefore, we attempt to cap-
ture this dimension by asking about the worker’s confidence in the accuracy
of the answer. In the case of response dimension (1) in the viewpoints study
(diversity), it is not enough to ask how diverse the topic is, since recognizing
the lack of diversity requires some knowledge about the topic. Therefore, we
include an additional user-judged response dimension related to transparency
in articulating different viewpoints or facets of the topic. Dimension (2) in the
viewpoints study (balance) is provided with an additional explanation to ensure
a common understanding of the underlying concept. Namely, we ask to assess
the unbiased (or balanced) perspective on the topic.

Part II: User Experience In the final part of each CIS interaction, we pose
a question about the overall satisfaction with the response (a proxy for the user
experience). It is followed by a required open text field for workers to elaborate
on their decision.

4.2.3 Data Analysis Methods
To address RQ2.1a, we assess if workers can detect flaws and inaccuracies in the
responses based on their ratings for user-judged response dimensions. We use
two-way ANOVA (Fisher, 1992) for analyzing the results, where the different
controlled response dimensions, representing different variants of the responses,
are factor variables. A separate ANOVA is performed for each user-judged re-
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sponse dimension (dependent variable) with the two controlled dimensions used
in a given study as independent variables. Additionally, three-way ANOVA is
used to investigate whether the controlled response dimensions and the ques-
tion or user’s familiarity with the topic have an effect on users’ evaluation of
the responses (measured with user-judged response dimensions). We analyze
the crowdsourced data with the Python statsmodels library2 and we use a
significance level of α = 0.05 to report statistical significance. Whenever appli-
cable, the ω2 unbiased effect size of a given factor is calculated to quantify the
magnitude of the variance observed in the model. It is classified based on the
scales used by Culpepper et al. (2022) (ω2 ≥ 0.14: large effect size; 0.06–0.14:
medium; 0.01–0.06: small; ≤ 0: no effect).

4.3 User Study Execution

We used the Amazon Mechanical Turk (AMT) crowdsourcing platform to collect
responses from online workers.3 The studies were run between 15 September
2023 and 4 October 2023.

4.3.1 Data
A critical element of the study is selecting query-response pairs that best rep-
resent the particular challenges. We manually craft responses for twenty search
queries from TREC CAsT’20 (Dalton et al., 2020) and ’22 (Owoicho et al.,
2022),4 simulating everyday system interactions under various experimental
conditions. The responses are curated by the authors of this work to ensure
accordance with defined response dimensions and high data quality.

Queries

For each user study, we select ten queries from the topics released in CAsT’20
and ’22 that are susceptible to one of the identified problems (i.e., query an-
swerability and response incompleteness) as detailed below.

Answerability Study To identify queries with unanswerability issues (i.e.,
queries for which answers have not been found), we use the information nugget
(i.e., a piece of valuable information) annotations from the CAsT-snippets data-
set (to be detailed in Chapter 5) to indicate whether the answer or part of it has
been found in the top retrieved passages. We aim to select queries not widely
covered in the TREC CAsT passage collections and for which retrieving the an-
swer was challenging. Based on the annotations provided in the CAsT-snippets

2https://www.statsmodels.org/
3Our institution does not require ethics approval for this kind of study.
4The TREC CAsT’19 dataset is less complex compared to the 2020 and 2022 editions,

while the CAsT’21 dataset assesses relevance at the document level instead of passages.
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Table 4.3: Queries from the TREC CAsT’20 and ’22 datasets used in the an-
swerability study .

ID TREC ID Query

1 146_1-9 What’s the best bike seat

2 135_2-3 How often should I run to lose weight?

3 139_2-15 What are the other natural wonders of the world besides the Great Barrier
Reef?

4 142_7-1 I like hiking and Malbec wine. You mentioned some high peaks. How can
I hike some high mountains and visit some wineries famous for Malbec?

5 144_2-11 Tell me about the different types of rocket engines.

6 147_2-3 Interesting. What was the basis of the backlash Marvel Studios faced for
the Vice President’s suggestion that diversity was causing sales to slide?

7 149_3-1 How do you get impartial results from search engines?

8 82_6 What is the role of Co-Extra in GMO food traceability in the EU?

9 85_4 What licenses and permits are needed for a food truck?

10 90_5 Why did the Airbus A380 stop being produced?

dataset, we select queries that contain annotated snippets in some but not all of
the top-5 passages (based on their ground truth relevance scores in the TREC
CAsT datasets). This way, we ensure that the query faces unanswerability
problems, but some passages contain information that can be used to generate
factually correct responses.5 After selecting potential candidates, we randomly
select only one query per topic to maintain the study’s topical diversity. The
queries used in the answerability study are presented in Table 4.3.

Viewpoints Study Open-ended queries about complex or contentious top-
ics with multiple facets and/or viewpoints are specifically prone to incomplete
responses (Draws et al., 2021b). To identify such queries in TREC CAsT col-
lections, we: (1) manually select a subset of potential candidates and (2) ask
crowd workers to prioritize the selected queries in terms of their controversy and
broadness. In step (1), we identify queries related to politics, society, environ-
ment, science, education, and technology. Queries strongly dependent on the
conversational context or requiring background knowledge are not considered.
In step (2), we run a small crowdsourcing task where workers are presented with
a question and asked to assess its controversy and broadness on an ordinal scale
of 1–5. Based on the collected judgments, we select the top 12 queries for which
we generate different variants of the responses. At this stage, we select two
additional queries to run an additional validation step. The final ten queries
used in the viewpoints study are presented in Table 4.4.

5Note that answerability can be determined w.r.t. a document (e.g., SQuAD 2.0 (Ra-
jpurkar et al., 2018)), corpus (e.g., TREC CAsT (Dalton et al., 2019)), knowledge
base (Pathiyan Cherumanal et al., 2024), or external expert knowledge. In this chapter,
we consider answerability w.r.t. a particular set of retrieved passages.
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Table 4.4: Queries from the TREC CAsT’20 and ’22 datasets used in the view-
points study .

ID TREC ID Query

1 137_1-5 What do other philosophers think about Bostrom’s ‘simulation argument’?

2 105_6 What was the US reaction to the Black Lives Matter movement?

3 102_8 Can social security be fixed?

4 149_2-5 Are algorithms really biased against people of colour

5 136_1-13 What effects did the Watergate scandal have on President Nixon’s legacy?

6 138_1-9 Do you think social media might play a role in my son’s low self-esteem?

7 91_7 What do users of social networks get in return for by giving up their
privacy?

8 147_2-1 What is Marvel Studios’ approach to diversity for people of color?

9 82_2 What are the pros and cons of GMO food labeling?

10 132_2-1 That’s interesting. Tell me more about how climate change affects devel-
oping countries.

Responses

The responses were manually created by the authors of this work and are based
on the five most relevant passages in the TREC CAsT datasets. The selected
passages were first summarised using GPT-3.5, then manually reviewed and
embellished to add or remove information, verify the correctness, introduce
factual errors, or balance the content depending on the experimental condition.
We identify two main dimensions for generating system responses in each user
study, acknowledging that these dimensions are not exhaustive. Nevertheless,
our hypothesis posits that varying the responses along these dimensions will
give us the means to answer our research questions effectively.

Answerability Study Failure to find the exact answer to the query in CIS
can lead to factual errors and hallucinations (i.e., the introduction of facts that
are not true). This is a common problem especially when the response is gen-
erated as a summary of partially relevant passages using large language mod-
els (Tang et al., 2023). Therefore, we are mostly interested in the following two
response dimensions:

1. factual correctness of the included information, and

2. the presence and validity of the source of the information.

The accurate response contains factually correct information along with the
source (ECA

1 ), whereas the flawed response fails to provide a source (ECA
2 ),

contains factually incorrect or unsupported information with an invalid source
(ECA

3 ), or lacks a source altogether (ECA
4 ); see Table 4.5. The flawed response

may contain various factual inconsistencies, such as negation and number, entity,
or antonym swaps (Kryscinski et al., 2020), as well as fully hallucinated content
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Table 4.5: Schema for experimental conditions (ECA
1 –ECA

4 ) in the answerability
study . The last two columns contain different variants of CIS system response
along with the source for Query 4 (cf. Table 4.3).

Exp. Res. Dimensions
CIS System Response Source

Cond. Fact.Cor. Source

ECA
1

Factually
correct
+ valid
source

You can combine your love for
hiking and Malbec wine by vis-
iting Mendoza, Argentina. This
picturesque city is nestled in the
Andes and is renowned for its
vineyards...

https://wanderingtrade
r.com/argentina/top-5
-argentina-tourist-att
ractions/

ECA
2

Factually
correct
+ no
source

Same as above –

ECA
3

Factually
incorrect
+ invalid
source

(invalid)

To combine hiking and Malbec
wine, plan a trip to the Penedès
region in Catalonia. You can
explore the Montserrat moun-
tain range, which offers fan-
tastic hiking opportunities, and
then visit renowned wineries in
the Penedès, known for its ex-
ceptional Malbec wine produc-
tion. . .

https://www.winetouris
m.com/wine-tasting-tou
rs-in-penedes/
(The link is valid but the
article is a website with
Wine Tasting & Tours
in Penedès, Spain where
Malbec wine is not pro-
duced.)

ECA
4

Factually
incorrect
+ no
source

Same as above –

not supported by any source information (Ji et al., 2023; Liu et al., 2023a). An
invalid source indicates a mismatch between the source’s name and content, a
topically relevant source that does not support the specific facts in the response,
or a source with a broken link. Following the setup proposed for evaluating the
usefulness of supporting documents in the WikiHowQA benchmark (Bolotova-
Baranova et al., 2023), we allow workers to freely examine the sources linked in
the responses to evaluate their correctness and relevance.

Viewpoints Study Research on debated topics typically represents view-
points in a binary fashion (in favor/against). However, viewpoints are addi-
tionally characterized by stance, i.e., the degree of strength (e.g., slight support
vs. strong favor) and the logic of evaluation (underlying reason or perspective
behind the stance) (Draws et al., 2022). Our user study does not address the
stance or evaluation logic and focuses on a widely understood diversity of view-
points and facets. Crowd workers are asked to judge whether the expressed
viewpoints or described topic facets are diverse enough or not. While investi-
gating queries that are likely to result in incomplete responses, we are interested
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Table 4.6: Schema for experimental conditions (ECV
1 –ECV

3 ) in the viewpoints
study . The last column contains different variants of CIS system response for
Query 5 (cf. Table 4.4).

Exp. Res. Dimensions
CIS System Response

Cond. Diversity Balance

ECV
1

Multiple
viewpoints
covered
to the same
extent

The Watergate scandal initially had a severely dam-
aging effect on President Nixon’s legacy, tarnishing
his image as a corrupt politician and overshadow-
ing his accomplishments. However, in later years,
Nixon’s reputation underwent a degree of rehabili-
tation, with recognition of his roles in civil rights
and diplomacy. He transitioned from being primar-
ily associated with scandal to being acknowledged as
a respected elder statesman, although his legacy re-
mains marked by the shadow of Watergate.

ECV
2

Multiple
viewpoints
mentioned,
one covered
in detail

The Watergate scandal had a profoundly negative
impact on President Nixon’s legacy, overshadowing
many of his domestic achievements. It tarnished
his reputation as a corrupt politician, making him
a symbol of political scandal and misconduct in both
American politics and popular culture. While he did
enact significant legislation like creating the Envi-
ronmental Protection Agency, his presidency is pri-
marily remembered for the scandal, leading to his
resignation and becoming synonymous with political
corruption and disgrace.

ECV
3

Single
viewpoint
mentioned
and covered

The Watergate scandal had a profoundly negative
impact on President Nixon’s legacy. It tarnished
his reputation as a corrupt politician, making him
a symbol of political scandal and misconduct in both
American politics and popular culture. Nixon’s res-
ignation and the scandal’s fallout reinforced public
skepticism and criticism of the presidency, leaving a
lasting impression as one of the most Shakespearean
and disgraceful episodes in presidential history.

in the following two dimensions:

1. response diversity in terms of different viewpoints and/or facets men-
tioned, and

2. balance in the amount of information provided for each viewpoint and/or
facet.

The accurate response equally covers various points of view and/or facets of
the topic to the same extent (ECV

1 ). The flawed response mentions several
viewpoints and/or topic facets but elaborates only on one of them (ECV

2 ) or
mentions only one (ECV

3 ); see Table 4.6.6
We introduce an additional step for the viewpoints study to validate our

proposed response dimensions: diversity, and balance. This step, addressing

6Note that a text discussing a single viewpoint or facet cannot be unbalanced; therefore,
an experimental condition with a lack of diversity and balance is not applicable.
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the subjectivity of controversy and topic broadness, aids in filtering out non-
representative query-response pairs. We create small surveys where expert an-
notators are presented with three topics and lists of recommended resources used
to generate the responses. Expert annotators are asked to explore the provided
resources to become familiar with the given topic. Then, they are presented
with different response variants and asked to judge the diversity and balance of
each of the provided query-response pairs. For each of the twelve queries, we
collect ratings between 1–5 for diversity and balance from three different expert
annotators. We employ Ph.D. students for their academic skills in exploring new
domains, assuming their ratings reflect users highly familiar with the topics (i.e.,
experts). We exclude the query for which the response variant corresponding to
ECV

1 (multiple viewpoints covered to the same extent) is judged as not diverse
enough and the query for which the response variant corresponding to ECV

3

(single viewpoint mentioned and covered) is judged as too balanced.

4.3.2 Workers
Crowd workers with an approval rate greater than 97%, more than 5,000 ap-
proved HITs, and located in the US were qualified to participate in the studies.
Workers were paid $3 USD for successful HIT completion. The reward was
estimated based on the time needed by an expert to complete the task (the
time was increased by 30%) and the federal minimum wage in the US ($7.25
USD per hour). Three different workers assessed each query-response pair to
avoid repeated judgments that would reduce the reliability of the study (Steen
and Markert, 2021). This user study setup gave us 12 (3 workers × 4 answer
variants per query) different HITs for the answerability study and 9 (3 workers
× 3 answer variants per query) for the viewpoints study . This resulted in 36
annotators for answerability study and 27 annotators for viewpoints study . The
power analysis,7 employing results of one-way ANOVA with the experimental
condition as an independent variable and the user-reported values for the main
response dimension (factual correctness for the answerability study and diver-
sity for the viewpoints study) as a dependent variable, was conducted using
data collected in the first run. The results of the power analysis indicated that
the viewpoints study had a strong “true” effect when it existed. In contrast, the
low power of answerability study suggested a low statistical sensitivity—aligning
with our intuition that users are unlikely to detect hallucinations. To increase
the power of answerability study , we collected more data from five additional
workers per HIT in the second run with the same worker requirements and
rewards (see Table 4.7 for descriptive statistics). Ten submissions out of 133
released HITs were discarded due to failed attentiveness checks.

The answerability study involved 96 workers: 44 male and 52 female (no
workers reported “other” or “prefer not to say”). Thirty-four workers self-reported
to be in the 18–30 age group, 35 in the 31–45 group, 19 in the 46–60, and seven
in the 60+ group. One participant did not report on age. Regarding education,

7Calculated using the scripts at https://waseda.app.box.com/v/SIGIR2016PACK
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Table 4.7: User studies setup in numbers. Numbers in the parentheses refer to
the second data collection run.

Answerability Viewpoints

#queries per user study 10 10

#experimental cond. (#resp. per query) 4 3

#crowd workers per HIT 3 (+5) 3

#different HITs 12 9

#crowd workers per query-response 9 (+15) 9

#query-response pairs annotations 360 (+600) 270

two workers held a Ph.D. or higher, 15 had a master’s degree, 59 had a bachelor’s
degree, and 19 had high school. One participant did not report on education.
The viewpoints study involved 27 workers: 15 male and 12 female (with none
selecting “Other” or “Prefer not to say”). Three workers self-reported to be in
the 18–30 age group, 12 in the 31–45 group, 10 in the 46–60, and two in the
60+ group. Two workers had a master’s degree, 16 had a bachelor’s degree, and
8 had a high school education. One participant did not report on education.

4.4 Results and Discussion

The analysis of data obtained from the crowdsourcing experiments is performed
using the methods described in Section 4.2.3.

4.4.1 Users’ Ability to Recognize Problems
Table 4.8 shows the results of the two-way ANOVA performed to answer RQ2.1a
(Can users effectively recognize problems related to query answerability and re-
sponse incompleteness in system responses? ). Controlled response dimensions
are treated as independent variables, and a given response dimension (i.e., self-
reported worker ratings) as a dependent variable. Statistically significant results
indicate an effect of the experimental condition on a given response dimension.

Effect of controlled response dimension manipulation on response user
ratings We do not observe any statistically significant effect of manipulating
the controlled response dimensions on user ratings in the answerability study
(upper part of Table 4.8), suggesting that users cannot recognize pitfalls in the
responses or do not associate them with any of the response dimensions. On
the other hand, results for the viewpoints study (lower part of Table 4.8) show
small or medium effect on self-reported worker ratings meaning that users can
correctly identify the problems related to viewpoint diversity and balance.
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Table 4.8: Results of two-way ANOVA. Statistically significant effects are in
bold. Effect size: L=Large, M=Medium, S=Small (see Section 4.2.3).

Dependent Variable

(User-Judged)

Independent Variable(s)

(Controlled)
p-value

Effect

Size

Answerability Study

Factual Correctness

Contr. Fact. Corr. 0.014 -

Contr. Source 0.664 -

Contr. Fact. Corr. × Contr. Source 0.267 -

Conf. in Answer Acc.

Contr. Fact. Corr. 0.244 -

Contr. Source 0.763 -

Contr. Fact. Corr. × Contr. Source 0.575 -

Overall Satisfaction

Contr. Fact. Corr. 0.306 -

Contr. Source 0.394 -

Contr. Fact. Corr. × Contr. Source 0.267 -

Viewpoints Study

Diversity

Contr. Diversity 0.0 M

Contr. Balance 1.0 -

Contr. Diversity × Contr. Balance 0.0 M

Transparency

Contr. Diversity 0.0 M

Contr. Balance 1.0 -

Contr. Diversity × Contr. Balance 0.0 M

Balance

Contr. Diversity 0.0 S

Contr. Balance 1.0 -

Contr. Diversity × Contr. Balance 0.0 S

Overall Satisfaction

Contr. Diversity 0.0 S

Contr. Balance 1.0 -

Contr. Diversity × Contr. Balance 0.0 M

Effect of the interaction between query and controlled response di-
mensions on user ratings The three-way ANOVA results in Table 4.9 show
that the query and interaction between the query and the controlled response
dimensions (especially factual correctness) significantly affect all response di-
mensions in the answerability study , which aligns with findings from other in-
formation retrieval experiments, highlighting the topic-dependent nature of user
judgments (Culpepper et al., 2022; Alaofi et al., 2022). It indicates that the per-
ceived factual correctness may vary based on the query, despite the consistent
experimental condition. In the viewpoints study , only the diversity and over-
all satisfaction with the response are affected by the interaction between the
query and controlled response dimensions, suggesting that the viewpoints study
is more robust w.r.t. topic/query variability.
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Effect of the interaction between user background knowledge and
experimental condition The topic familiarity reported by workers is a proxy
for user background knowledge. Even though we anticipated that the topic
familiarity would influence the ratings reported by the workers for different
response dimensions, we did not observe a statistically significant association
of the interaction between the familiarity and experimental condition on any of
the response dimensions. This holds for both user studies (see Table 4.10).

4.4.2 User Experience
This section discusses the results to answer RQ2.1b (How do factually incorrect,
inaccurate, incomplete, and/or biased responses impact the user experience?).

Correlation between user-reported response dimensions and the over-
all satisfaction Table 4.11 shows the Pearson correlation coefficient r calcu-
lated for overall satisfaction—a proxy for user experience—, and user-reported
response dimensions. For both user studies, we observe a moderately strong
correlation (0.6 < r < 0.8) between user satisfaction and other user-judged di-
mensions. This suggests that satisfaction is a fairly good indicator of the overall
user experience. Correlations for the answerability study are lower than for the
viewpoints study . As we discussed in Section 4.4.1, we do not observe a sta-
tistically significant effect of the controlled response dimension on user ratings
for the answerability study . This implies that users find these response dimen-
sions important and associate them with satisfaction, but they are not able to
identify them correctly in system responses. On the other hand, results for the
viewpoints study suggest that users can correctly identify these dimensions and
use them as indicators for their satisfaction.

Effect of query and response quality on overall satisfaction In both
studies, the query significantly affects overall satisfaction (see Table 4.12). We
do not observe a statistically significant association between controlled response
dimensions and overall satisfaction in the answerability study , which suggests
that response quality does not influence worker’s perception of satisfaction
(see Table 4.8). The opposite observation is made in the viewpoints study ,
implying that workers can spot response inaccuracies. The three-way ANOVA
(Table 4.9) shows that a small- or medium-size effect of the query leads to a sta-
tistically significant effect of the interaction between query and response variant
on the overall satisfaction for both studies. This indicates that, in terms of user
satisfaction, both studies are sensitive to topic variability that may impact the
results. For future work, using a larger number of queries, especially for the
answerability study , may increase the sensitivity of the experiment.

4.4.3 Further Analysis
Rating distributions for response dimensions In the answerability study ,
the ratings for user-judged response dimensions, topic familiarity, and overall
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Table 4.9: Results of three-way ANOVA. Stat. significant effects are in bold.
Effect size: L=Large, M=Medium, S=Small (see Section 4.2.3).

Dependent Variable

(User-Judged)

Independent Variable(s)

(Controlled)
p-value

Effect

Size

Answerability Study

Factual Correctness

Query 0.0 S

Contr. Fact. Corr. × Query 0.002 S

Contr. Source × Query 0.048 -

Contr. Fact. Corr. × Contr. Source × Query 0.439 -

Conf. in Answer Acc.

Query 0.015 S

Contr. Fact. Corr. × Query 0.0 S

Contr. Source × Query 0.118 -

Contr. Fact. Corr. × Contr. Source × Query 0.341 -

Overall Satisfaction

Query 0.0 S

Contr. Fact. Corr. × Query 0.0 S

Contr. Source × Query 0.339 -

Contr. Fact. Corr. × Contr. Source × Query 0.598 -

Viewpoints Study

Diversity

Query 0.147 S

Contr. Diversity × Query 0.101 S

Contr. Balance × Query 1.0 -

Contr. Diversity × Contr. Balance × Query 0.016 S

Transparency

Query 0.35 -

Contr. Diversity × Query 0.582 -

Contr. Balance × Query 1.0 -

Contr. Diversity × Contr. Balance × Query 0.689 -

Balance

Query 0.012 S

Contr. Diversity × Query 0.559 -

Contr. Balance × Query 1.0 -

Contr. Diversity × Contr. Balance × Query 0.316 -

Overall Satisfaction

Query 0.001 M

Contr. Diversity × Query 0.599 -

Contr. Balance × Query 1.0 -

Contr. Diversity × Contr. Balance × Query 0.034 S

satisfaction per query are concentrated around higher values (3 and 4) for all
response dimensions apart from familiarity (see Figure 4.3). It means that
workers are not very critical in evaluating these dimensions or cannot identify
the pitfalls related to them. Workers report that they are rather unfamiliar with
most of the query topics. In the viewpoints study , the ratings for familiarity are
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Table 4.10: Results of three-way ANOVA. Stat. significant effects are in bold.
Effect size: L=Large, M=Medium, S=Small (see Section 4.2.3).

Dependent Variable

(User-Judged)

Independent Variable(s)

(Controlled)
p-value

Effect

Size

Answerability Study

Fact. Corr.

Familiarity 0.006 S

Contr. Fact. Corr. × Familiarity 0.962 –

Contr. Source × Familiarity 0.275 –

Contr. Fact. Corr. × Contr. Source × Familiarity 0.56 –

Conf. in Answer Acc.

Familiarity 0.0 S

Contr. Fact. Corr. × Familiarity 0.894 –

Contr. Source × Familiarity 0.556 –

Contr. Fact. Corr. × Contr. Source × Familiarity 0.348 –

Overall Satisfaction

Familiarity 0.0 M

Contr. Fact. Corr. × Familiarity 0.544 –

Contr. Source × Familiarity 0.381 –

Contr. Fact. Corr. × Contr. Source × Familiarity 0.777 –

Viewpoints Study

Diversity

Familiarity 0.816 –

Contr. Diversity × Familiarity 0.056 S

Contr. Balance × Familiarity 1.0 –

Contr. Diversity × Contr. Balance × Familiarity 0.628 –

Transparency

Familiarity 0.788 –

Contr. Diversity × Familiarity 0.257 –

Contr. Balance × Familiarity 1.0 –

Contr. Diversity × Contr. Balance × Familiarity 0.316 –

Balance

Familiarity 0.89 –

Contr. Diversity × Familiarity 0.325 –

Contr. Balance × Familiarity 1.0 –

Contr. Diversity × Contr. Balance × Familiarity 0.242 –

Overall Satisfaction

Familiarity 0.358 –

Contr. Diversity × Familiarity 0.187 –

Contr. Balance × Familiarity 1.0 –

Contr. Diversity × Contr. Balance × Familiarity 0.38 –

more spread. A wide range of diversity ratings is observed per query, unlike for
other response dimensions. Even though the ratings are more spread than for
the answerability study , most of the ratings concentrate around a higher value
(i.e., 3).
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Table 4.11: Pearson correlation between user-reported response dimensions and
their overall satisfaction with the system’s response.

Response Dimension Correlation Coefficient

Answerability Study

Factual Correctness 0.634

Conf. in Answer Acc. 0.660

Viewpoints Study

Diversity 0.720

Transparency 0.727

Balance 0.785

Effect of background knowledge on the response dimensions Accord-
ing to the results of one-way ANOVA with familiarity used as an independent
variable (see Table 4.12), we obtain different results for the two studies. In the
answerability study , the worker’s background knowledge impacts how accurate
or satisfying they find the response. Whereas, in the viewpoints study , none of
the response dimensions is significantly affected by users’ topic familiarity.

Effect of the query on the response dimensions In both user studies the
topic familiarity and overall user satisfaction are significantly affected by the
query (see Table 4.12). It means that user background knowledge and response
satisfaction depend on the query, not necessarily on the response. It confirms
that, to get meaningful results, one must include many different study topics,
which is indeed what we tried to ensure with our query selection processes.
Statistically significant differences in response dimensions between queries are
observed for all dimensions in the answerability study , while only for balance in
the viewpoints study . This suggests that the former studies’ setup is more query-
dependent than the latter. The results are more generalizable in the viewpoints
study , even after collecting additional data according to the power analysis
results for the answerability study . The high effect of the query on all the
response dimensions in the answerability study also justifies the significant effects
of the interactions between the query and the controlled response dimensions
observed in the three-way ANOVA.

4.4.4 Qualitative Analysis
To validate our findings, we characterize workers’ user experience by analyzing
their natural language comments. We manually inspect all the 960 worker com-
ments in the answerability study and 270 in the viewpoints study . We followed
an inductive approach (Williams, 2008) to identify themes in the comments.
After consensus among the authors, one of the authors labeled all comments.
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Figure 4.3: Distribution of user-judged response dimensions per query in the
two user studies. Yellow lines indicate the median values.

Next, we counted how many workers mentioned a particular aspect.8 In the
reporting below, numbers in parentheses indicate the proportion of high (when
the aspect mentioned in the comments is positive) or low (when the aspect is
negative) satisfaction ratings corresponding to specific aspects mentioned in the
comments. For instance, if three workers mention a positive aspect like “factual
correctness” in the open text field, but only two assign high satisfaction scores
on the four-point Likert scale, this is reported as 2/3. Conversely, if a nega-
tive aspect like “bias” is identified by five workers and four of them express low
satisfaction, it is recorded as 4/5.

Coherence, fluency, naturalness, details, and logic of the response mentioned
in the comments are almost always accompanied by high satisfaction ratings
(178/185 in the answerability study and 23/23 in the viewpoints study). In
the answerability study , comments mentioning positive aspects such as factual
correctness (126/133), information completeness (99/100), agreement with the
response (59/60), presence (53/64), and credibility (18/23) of the source are
accompanied by high satisfaction ratings (3 or 4 on the Likert scale). However,
high satisfaction ratings are not always paired with positive comments. Some
comments associated with high satisfaction ratings indicate negative aspects,
such as lack of source (4/21) or invalid source (2/11). Additionally, highlighting
missing or incomplete information (60/156) does not always cause a decrease in
the satisfaction rating. In the viewpoints study , positive comments indicating
high diversity (55/58), balance (6/6), lack of bias (12/13), completeness of the
provided response (22/22), or agreement with the answer (8/9) are accompa-
nied by high satisfaction ratings. However, some responses describing negative
aspects such as bias (14/25) or lack of diversity (43/64) are still given high
satisfaction ratings. Most of the responses described as not diverse (43/64) or

8While adhering to an established qualitative analysis approach, the authors acknowledge
that personal interpretation may introduce some degree of subjectivity in the interpretation
and categorization of the data.
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Table 4.12: Results of one-way ANOVA. Statistically significant effects are in
bold. Effect size: L=Large, M=Medium, S=Small (see Section 4.2.3).

Dependent

Variable

Independent

Variable(s)
p-value

Effect

Size

Answerability Study

Familiarity

Query

0.0 M

Factual Corr. 0.0 S

Conf. in Answer Acc. 0.019 S

Overall Satisfaction 0.0 S

Factual Correctness
Familiarity

0.005 S

Conf. in Answer Acc. 0.0 S

Overall Satisfaction 0.0 M

Viewpoints Study

Familiarity

Query

0.0 L

Diversity 0.338 -

Transparency 0.458 -

Balance 0.027 S

Overall Satisfaction 0.005 S

Diversity

Familiarity

0.375 -

transparency 0.478 -

Balance 0.639 -

Overall Satisfaction 0.378 -

imbalanced (12/22) are accompanied by low satisfaction ratings (1 or 2 on the
Likert scale). Additional aspects mentioned in the comments include the use-
fulness (33/35 comments accompanied by high satisfaction rating) and subjec-
tivity (10/24 comments accompanied by low satisfaction rating) of the response
in the answerability study , and lack of source (4/12 comments accompanied by
low satisfaction rating) in the viewpoints study . It is worth pointing out that
while usefulness is a common indicator of successful completion of the search
task (Cambazoglu et al., 2021; Liu, 2023), it is only mentioned in 2.8% of the
comments.

Although satisfaction ratings are skewed (see Figure 4.3) and other scales
such as magnitude estimation (Turpin et al., 2015) may give us more informa-
tive ratings, they are roughly aligned with the dimensions we aim to capture.
It implies that the dimensions we use to differentiate between response vari-
ants impact user satisfaction. Comments from the answerability study suggest
that satisfaction is associated with both factual correctness and source valid-
ity. The frequent user references to factual correctness in comments imply a
significant focus on this aspect when evaluating responses. Even though we ob-
serve a high correlation between user-reported response dimensions and overall
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satisfaction, we do not observe a statistically significant effect of the controlled
factual correctness on user ratings for this response dimension. This implies
that users find these response dimensions important and associate them with
their satisfaction, but they are not able to identify factuality correctly in the
responses. Additionally, one-way ANOVA for the answerability study revealed
that the overall satisfaction is affected by the query and topic familiarity, not
the controlled response dimensions (see Table 4.12). This also explains why the
response dimensions mentioned in the comments do not completely align with
the actual flaws in the responses. The results’ sensitivity to the topics may
suggest that including more queries in further studies might reveal the effect of
factual correctness and source validity on overall satisfaction. In the viewpoints
study , our qualitative analysis shows that user satisfaction is more linked to
viewpoint diversity and response completeness than information balance, differ-
ing from quantitative findings. It can follow from the fact that the concept of
response diversity is better understood by users and is easier to identify. Nev-
ertheless, the qualitative analysis shows that selected response dimensions are
indeed common indicators of user satisfaction.

4.5 Discussion

Summary of findings Users generally find it easier to perceive viewpoints
than to assess factual correctness. In the answerability study , crowd workers
demonstrate a limited ability to detect pitfalls in responses compared to the
viewpoints study , highlighting the challenge of identifying factual errors with-
out topic-specific knowledge. In terms of user satisfaction, in the answerability
study it strongly correlates with confidence in answer accuracy, highlighting
the importance of valid sources. In the viewpoints study , satisfaction is tied to
perceived balance, with users preferring unbiased responses that equally cover
all viewpoints. Satisfaction scores reported by users do not always align with
their comments—additional aspects revealed in free-text user comments refer
to source credibility, as well as the completeness, usefulness, and subjectivity
of the provided information—, indicating a potential discrepancy between re-
ported and actual satisfaction levels. Users may also associate their satisfaction
with response fluency, which can be easily ensured by existing generative search
engines. However, it does not guarantee the accuracy or proper citation of all
statements (Liu et al., 2023a).

Implications of our findings The conclusions drawn from these studies in-
form the design of future response generation methods and highlight important
challenges that still need to be addressed. Simply relying on the relevance of
the top retrieved passages does not guarantee the generation of a satisfying
response. Future response generation approaches must ensure the complete-
ness, diversity, balance, objectivity, and factual correctness of responses, along
with proper attribution to credible sources. Additionally, the response should
inform users of potential inaccuracies and help them assess the presented in-
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formation objectively, by providing sources or system capability details. In-
cluding these explanations ensures transparent and effective interactions with
the system (see Chapter 7). Another open challenge is the evaluation of the
generated responses. To the best of our knowledge, there are no CIS datasets
with ground truth judgments for the identified response dimensions. Our study
designs and experimental protocol can serve as a blueprint for human evalua-
tion of responses across multiple dimensions, supporting data collection for a
broader range of experimental conditions, more complex multi-turn settings,
and additional queries/topics.

Lessons learned from executing user studies Reflecting on our experi-
ences from conducting these user studies, several key lessons that may be found
useful by the community have become apparent:

1. The effectiveness of these studies depends on the careful selection of rep-
resentative queries and responses to the problems being investigated.

2. Incorporating validation steps, especially in experiments that involve sub-
jectivity, helps mitigate biases introduced by study designers.

3. Implementing attentiveness checks is crucial for ensuring the quality of
collected data and maintaining the credibility of the gathered information.

4. While qualitatively analyzing responses from crowd workers in natural
language may incur higher costs, it can reveal unforeseen dimensions and
challenges. Furthermore, natural language responses to open-ended ques-
tions serve as reliable indicators of data quality—fluent, relevant, and in-
formative responses from crowd workers typically accompany meaningful
data.

5. Developing operational definitions of explored dimensions and refining
them iteratively during the initial stages of experimentation and design
fosters a deeper understanding of the dimensions under examination and
facilitates necessary adjustments before data collection begins.

Limitations Due to the complexity of the user studies and the costs involved,
some simplifications were made, such as focusing on single-turn interactions and
a limited number of queries. As a result, these experiments do not fully reflect
the dynamic nature of real-world CIS dialogues, where user needs and context
change over multiple turns. Future work will explore more topics, particularly
for the answerability study , to enhance result sensitivity, and use other scales to
capture overall satisfaction (e.g., magnitude estimation (Turpin et al., 2015)).
Another limitation is relying on Amazon MTurk crowd workers, who may not
fully represent the diversity of CIS system users. These studies do not fully
control participants’ own biases, which is left for future investigation. Lastly, the
findings of this work are limited to the properties of the test collection used in our
experiments. Future experiments should also explore answerability on broader
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levels—such as ranking, corpus, and expert knowledge—while considering the
system’s transparency when no answer is found, as well as a wider spectrum of
topics, viewpoints, and responses. Despite these limitations, the experiments
serve as a first step toward understanding challenges in CIS response generation
and highlight key open questions for further research.

4.6 Conclusions

Response generation poses various challenges in CIS systems. To study this,
we proposed two crowdsourcing-based study designs to investigate unanswer-
able questions and incomplete responses from a user perspective in the scenario
inspired by the TREC CAsT benchmark. We explored users’ ability to rec-
ognize factual inaccuracies, pitfalls, and biases in terms of viewpoint diversity
by controlling experimental conditions in manually crafted responses simulat-
ing CIS system interactions. In answer to RQ2.1 (Which limitations in the
responses are detectable by users?), our findings indicate that users are more
adept at detecting viewpoint diversity issues and response biases than factual
errors or problems related to source validity. These results provide evidence that
CIS system responses cannot be limited to a simple synthesis of the retrieved
information and source attribution alone is insufficient to ensure effective inter-
action with the system. We believe CIS responses should explicitly inform users
about potential inaccuracies and provide aid to assess the presented informa-
tion objectively (e.g., by including credible sources or information about system
capabilities).

The lessons learned from these experiments serve as a roadmap for con-
structing transparent and reliable responses. Insights revealing users’ difficulty
in detecting factual errors prompt further experiments on unanswerability detec-
tion (see Chapter 5) and directly communicating response limitations to users
(see Chapter 7). Additionally, considerations around response diversity and
completeness inspire our future work on clustering information from retrieved
passages by topic facets and ensuring information density when generating re-
sponses (see Chapter 6).
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Chapter 5

Snippet-level Annotations for Predicting
Query Answerability

To learn which questions are unanswerable,
and not to answer them: this skill is most
needful in times of stress and darkness.

— Ursula K. Le Guin

A large fraction of research on conversational information seeking (CIS) to
date has focused on the problem of retrieving relevant passages. The task of
conversational passage retrieval requires advances in query rewriting (Lin et al.,
2021; Vakulenko et al., 2021a,c) and can also directly benefit from research on
multi-stage passage retrieval (Luan et al., 2021) (see Chapter 3). However,
identifying relevant passages is only an intermediate step. Ultimately, the infor-
mation contained in these passages would need to be synthesized into a single
answer. Conversational response generation is the task of encapsulating the
most relevant pieces of information in an easily consumable unit (Culpepper
et al., 2018) (see Section 2.2.2). Including it in the CIS pipeline would increase
the naturalness of the conversation (Trippas et al., 2020, 2018).

There are at least two main challenges involved in the task of response
generation: identifying key pieces of information from relevant results (e.g.,
paragraphs) and summarizing them in a concise answer. Correspondingly, Ren
et al. (2021) proposes to split the task into two stages: (1) identification of
supporting snippets and (2) summarization of selected snippets. In this chapter,
we focus on the problem of (1), and more specifically on building a snippet
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dataset with high-quality annotations using crowdsourcing. We develop critical
CIS resources to support the grounded and transparent response generation
methods proposed later in this thesis.

The significance of being able to identify relevant snippets is twofold. First,
it enables the training of models that can ground the generated answers in
actual statements. Natural language generation models are susceptible to hal-
lucinations, especially if the query is insufficiently covered in the corpus, or
the retrieved documents contain redundant, complementary, or contradictory
information (Ji et al., 2023). Therefore, employing abstractive summarization
methods on top of relevant snippets identified can help to mitigate this prob-
lem and provide more control over the generation process, much in the spirit of
the two-step process proposed in (Ren et al., 2021) (see Chapter 6). Second, it
would enable automatic evaluation of the generated responses quantitatively, in
terms of relevant information nuggets included (Pavlu et al., 2012). Response
summarization in CIS systems has been piloted in TREC CAsT’22 (Owoicho
et al., 2022), where the quality of answer summaries is evaluated by human
judges along three dimensions: relevance, naturalness, and conciseness (Owoicho
et al., 2022). Having annotations of relevant snippets would enable automatic
evaluation of answers in terms of completeness (see Chapter 7).

Even though crowdsourcing has become an established means of collecting
human annotations at scale, ensuring data quality can be challenging (Daniel
et al., 2019). Indeed, we demonstrate that the seemingly straightforward task
of highlighting relevant snippets may not be so simple and deserves closer at-
tention. In the first part of this chapter, we investigate what effective task
designs and the trade-offs between worker qualifications and costs to perform
the task of snippet annotations are. We address the following research ques-
tion: How to identify core information units in the relevant passages
that need to be included in the response? (RQ3.1). Specifically, we
consider paragraph- and sentence-level snippet annotation interfaces, multiple
crowdsourcing platforms, and crowd workers with different qualifications as well
as expert annotators. Measuring the quality of annotations is challenging be-
cause relevant snippet selection is subjective and often there are multiple correct
sets of snippets in a given passage. We evaluate the resulting annotations in
terms of inter-annotator agreement and similarity to expert annotations using
text similarity measures adapted to this task. Based on these results, we set
out to create a large-scale dataset, CAsT-snippets, which enriches the TREC
CAsT’20 and ’22 datasets with snippet-level answer annotations. We follow a
setup in which we closely work with a selected pool of highly engaged crowd
workers in order to ensure high data quality.

In the second part of this chapter, we explore the application of the CAsT-
snippets dataset to query answerability detection addressing the following re-
search question: How to detect factors contributing to incorrect, in-
complete, or biased responses? (RQ2.2). In an ideal scenario, when the
passages from the top of the ranking answer the question, the task of response
generation boils down to summarization (Owoicho et al., 2022). However, it is
often the case that the answer to the user’s question is not contained in the
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top retrieved passages. In such cases, summaries generated from those passages
would result in hallucinations (Tang et al., 2023; Cao et al., 2016). Therefore, we
propose a mechanism for detecting unanswerable questions for which the correct
answer is not present in the corpus or cannot be retrieved. More specifically,
given a set of top-ranked passages that have been identified as most relevant
to the given question, we predict if the question can be answered (at least par-
tially) based on information contained in those passages. This enables us to
move beyond the notion of passage relevance and focus more on the actual pres-
ence of the information that answers the question. Introducing this additional
step of answerability prediction in the CIS pipeline, to be performed after the
passage retrieval and before the response generation steps, could help mitigate
hallucinations and factual errors. It would enable the system to transparently
communicate to the user if the answer to the query could not be found, instead
of generating a response from only marginally relevant passages.

To fill this gap, we extend the CAsT-snippets dataset with answerability
labels on three levels: (1) sentences, (2) passages, and (3) rankings (i.e., top-
ranked passages retrieved by a CIS system), introducing a CAsT-answerability
dataset, to train and evaluate methods for question answerability prediction.
Notably, we generate input passage rankings with various degrees of difficulty
in answerability prediction, mixing passages that contain answers with those
with no answers, in a controlled way. As a result, passage rankings range from
all passages containing an answer to “no answer found in the corpus.” This
extended dataset is then used to develop a baseline approach for predicting
answerability based on an input ranking. Our proposed approach predicts which
sentences from the top-ranked passages contribute to the answer and aggregates
the obtained answerability scores on the passage and ranking levels.

The resources presented in this chapter are made publicly available. The
CAsT-snippets dataset and code for computing evaluation measures are avail-
able at https://github.com/iai-group/CAsT-snippets. The CAsT-
answerability dataset and the implementation of our proposed answerability
prediction method can be found at https://github.com/iai-group/answe
rability-prediction. Additional information about datasets is provided in
Appendix B.

This chapter is based on the following papers:

Łajewska and Balog (2023b): Towards Filling the Gap in Conversational
Search: From Passage Retrieval to Conversational Response Generation,
CIKM ’23 �

Łajewska and Balog (2024a): Towards Reliable and Factual Response Gen-
eration: Detecting Unanswerable Questions in Information-seeking Con-
versations, ECIR ’24 �
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5.1 Related Work

Some dimensions of responses are not reliably covered by currently available
automatic metrics and require manual evaluation (e.g., coherence and rele-
vance) (Fabbri et al., 2021), while others (e.g., completeness) can be evalu-
ated automatically, provided that more fine-grained annotations are available.
Information nuggets have been proposed as an alternative to automatically as-
sign relevance judgments to documents and/or evaluate retrieval systems (Pavlu
et al., 2012) (see Section 2.2.3). Our work aims to contribute to this type of
evaluation by studying ways to collect snippet-level annotations. A task similar
to snippet annotation (or information nuggets identification) has been broadly
researched in QA systems. In most available datasets for reading comprehension
focused mainly on factoid questions, the generated response is a single entity or
a short segment of text from the passage (Rajpurkar et al., 2016; Campos et al.,
2015; Tan et al., 2018; Choi et al., 2018).

Crowdsourcing provides a scalable means to the completion of large amounts
of labeling or annotation tasks that require human intelligence (Gadiraju et al.,
2015). The actual quality of the results is influenced by the workers, software
platform (Vakharia and Lease, 2013), task design (Eickhoff, 2018), and quality
measures employed (Daniel et al., 2019). In this chapter, we attempt to under-
stand what setup is needed to effectively perform the task of snippet annotation.

Relevant annotation efforts include QuaC (Choi et al., 2018), which is a
dataset of QA dialogues. However, it is limited to sections of Wikipedia articles
and contains only dialogues about a biased sample of entities of type person.
Queries in CAsT datasets are much more diverse, both in terms of the expected
type of answer and in the topics discussed. Most relevant to our work is the
paper by Ren et al. (2021), where crowd workers are asked to respond to queries
from the TREC CAsT’19 dataset while being presented with SERPs. The
response generation task is divided into three stages: (optional) query rewriting,
finding supporting sentences in results displayed on a SERP, and summarizing
them into a short conversational response. We focus only on the supporting
evidence-finding step, which is performed on a finer (snippet-level) granularity,
and explore various task designs to ensure high data quality.

In the second part of this chapter, we leverage the collected data to train
an unanswerability detector for response generation. The problem of unanswer-
ability has been addressed in the context of machine reading comprehension
(MRC) (Huang et al., 2019a; Hu et al., 2019) and extractive question-answering
(QA) (Asai and Choi, 2021; Liao et al., 2022; Godin et al., 2019). Solutions pro-
posed include answerability prediction using prompt-tuning (Liao et al., 2022),
modeling high-level semantic relationships between objects from question and
context (Huang et al., 2019a), and combining the output of reading and veri-
fication modules in MRC systems (Hu et al., 2019; Zhang et al., 2020a). Ren
et al. (2021) acknowledge the challenge of unanswerability in conversational
search; however, their approach does not explicitly address it. This work aims
to bridge that gap by integrating unanswerability detection into the response
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This is a sample passage text to annotate

This is a sample passage text to annotate

Fleiss' Kappa: -0.24
Jaccard: 0.13

Jaccard_2: 0.75

Fleiss' Kappa: 0.06
Jaccard: 0.29
Jaccard_2: 1.0

This is a sample passage text to annotate
Fleiss' Kappa: -0.31

Jaccard: 0.0
Jaccard_2: 0.14

This is a sample passage text to annotate
Fleiss' Kappa: -0.26

Jaccard: 0.0
Jaccard_2: 0.0

Figure 5.1: Visualization of annotations made by 3 workers on a sample text.
The values of Fleiss’ Kappa indicate poor agreement. On the other hand, Jac-
card similarity offers more granular results which are easier to interpret in this
specific scenario. Krippendorf’s Alpha with nominal weight function gives anal-
ogous results to Fleiss’ Kappa.

generation process. Our proposed solution for answerability prediction is based
on a sentence-level classifier that is learned on CIS-specific training data, and
can further be augmented with QA answerability data.

5.2 Evaluating Snippet Annotations

Traditional metrics for inter-annotator agreement such as Fleiss’ Kappa or Krip-
pendorff’s Alpha are designed to assess categorical annotations and rely on a
binary notion of agreement. In our case, we are more interested in measuring the
degree to which snippets selected by different workers overlap (see Figure 5.1).
We define evaluation measures to compare the agreement between annotators
and across crowd workers and expert annotators.

5.2.1 Inter-annotator Agreement
We define inter-annotator agreement in terms of Jaccard similarity. Given an
input text t annotated by n workers (w1, . . . , wn), we count the length of the
snippets chosen by all annotators and divide it by the length of snippets chosen
by any annotator. Formally:

J(t) =
|
⋂n

i=1 snippets(t, wi)|
|
⋃n

i=1 snippets(t, wi)|
, (5.1)

where snippets(t, wi) denotes the set of intervals selected by worker wi in text t.
The intersection and union of snippet intervals are calculated on the character
level.

We also consider a less strict variant of the measure, termed Jaccardk, which
takes only those intervals into account that are chosen by at least k annotators.
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Formally, in the numerator in Eq. (5.1) we count the length of intervals that ap-
pear in at least k annotations made by different workers, while the denominator
remains unchanged.

5.2.2 Similarity to Reference Annotations
To measure the similarity of snippet annotations by crowd workers against refer-
ence annotations by experts, we follow a logic similar to ROUGE-1, which con-
siders the overlap of unigrams between the system and reference summaries (Lin,
2004). Specifically, we employ the ROUGE-like measures proposed in (Iskender
et al., 2021). For every input text t, we have annotations made by n differ-
ent crowd workers (wi) and reference annotations by m different experts (ej).
First, we define precision and recall of the snippets in text t between a pair of
annotators wi and ej :

pi,jt =
|snippets(t, wi) ∩ snippets(t, ej)|

|snippets(t, wi)|
,

ri,jt =
|snippets(t, wi) ∩ snippets(t, ej)|

|snippets(t, ej)|
.

We compute the F1 score as the harmonic mean of precision and recall: f1i,jt =
2× pi,jt × ri,jt /(pi,jt + ri,jt ).

Next, we aggregate these measures for a given crowd worker i against all (m)
expert annotations: precision as P i

t = 1
m

∑m
j=0 p

i,j
t , recall as Ri

t =
1
m

∑m
j=0 r

i,j
t ,

and F1 score as F1it =
1
m

∑m
j=0 f1

i,j
t .

Finally, we aggregate the annotations across all (n) crowd workers in three
different ways:

• Mean (P t, Rt, F1t), by simply averaging P i
t , Ri

t, and F1it over all crowd
workers.

• Majority (P≫
t , R≫

t , F1≫t ), where we consider a single crowd worker snippet
annotation, which is taken as the union of intervals that are selected by the
majority of workers.

• Similarity (P≃
t , R≃

t , F1≃t ), where we only consider the snippet annotation
by crowd worker wi that is most similar to the annotations of other crowd
workers in terms of f1i,jt .

5.3 A Preliminary Study of Snippet Annotation

To ensure that we get high-quality snippet-level annotations, we first perform
a preliminary study where we compare different task designs, platforms, and
worker pools, by annotating two topics selected from the TREC CAsT’22 dataset,
with markedly different characteristics, comprising 22 queries in total. The first
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Query: I remember Glasgow hosting COP26 last year, but unfortunately I was out of the
loop. What was the conference about?

Passage: HOME - UN Climate Change Conference (COP26) at the SEC – Glasgow 2021
Uniting the world to tackle climate change. The UK will host the 26th UN Climate Change
Conference of the Parties (COP26) in Glasgow on 1 – 12 November 2021. The COP26
summit will bring parties together to accelerate action towards the goals of the Paris
Agreement and the UN Framework Convention on Climate Change. The UK is committed
to working with all countries and joining forces with civil society, companies and people on
the frontline of climate change to inspire climate action ahead of COP26. COP26 @COP26
· May 25, 2021 1397069926800654339 We need to accelerate the #RaceToZero Join wef,
MPPindustry, topnigel & gmunozabogabir for a series of events demonstrating the need for
systemic change to accelerate the global transition to net zero. Starting May 27th Learn
more #ClimateBreakthroughs | #COP26 Twitter 1397069926800654339 COP26 COP26 ·
May 24, 2021 1396737733649846273 #TechForOurPlanet is a new challenge programme
for #CleanTech startups to pilot and showcase their solutions at #COP26! Innovators
can apply to six challenges focusing around core climate issues and government priorities.

Figure 5.2: Sample from the CAsT-snippets dataset with highlighted expert
annotations.

       

Paragraph-based annotation Sentence-based annotation

1) 2)

Sentence 1
Sentence 2
 ...

Query Query Query
Text spans

from sentence
Text spans

from sentence
Passage Sentence

Relevant
sentences

Figure 5.3: Illustration of different designs for the snippet annotation task.

topic (ID 132) has 12 turns (i.e., queries) and focuses on listing several indepen-
dent pieces of information, which requires workers to choose multiple keywords
or phrases within each passage. The second topic (ID 133) consists of 10 turns
with questions about recipes, where several consecutive sentences contain rele-
vant bits of information to be included in the answer.

5.3.1 Task Designs
We task crowd workers with the identification of snippets in a provided text
that contains key pieces of the answer to a given query. Text snippets are
required to be short, concise, informative, self-contained, and cannot overlap.
Each snippet is supposed to contain one piece of information, so it can be
treated as an information nugget. An example expert-annotated snippet is
shown in Figure 5.2. Specifically, we identify snippets in paragraphs that have
been labeled as relevant answers to the question. These passages can be long,
which makes the annotation task cognitively demanding. Therefore, we consider
two designs of the task: paragraph-based and sentence-based; see Figure 5.3.

In the paragraph-based annotation task, workers are asked to identify all
text snippets in a given passage that are relevant to the input query. Since
paragraphs can be lengthy, we also consider a simplified, sentence-based variant
of this task, which lets workers operate on the significantly shorter text and
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Table 5.1: Task configurations used for data collection; values are averaged for
the annotation of a single paragraph.

Task
Annotator Time

# Acceptance
Cost

Variant workers rate

Paragraph

MTurk regular 182s 5 50% $0.36

MTurk master 63s 5 90% $0.38

Prolific 154s 5 79% $0.51

Expert 96s 3 - -

Sentence
MTurk regular 977s 3 72% $0.43

MTurk master 305s 3 87% $0.56

enforces shorter text snippet selection. Specifically, the task is divided into: (1)
relevant sentence selection, and (2) snippet annotation in relevant sentences.
In sub-task (1), crowd workers are presented with a question and a passage
that is split into sentences. They are asked to choose sentences that contain
information relevant to the query. This is a straightforward task that resembles
extractive summarization (Zhou et al., 2018). Sub-task (2) is very similar to
the paragraph-based annotation task, the only difference is that workers are
presented with a relevant sentence instead of an entire passage.

5.3.2 Platforms and Workers

We set up the annotation task on two crowdsourcing platforms: Amazon MTurk1

and Prolific.2 MTurk offers an easily customizable web-based annotation inter-
face and it is possible to filter workers based on qualifications. Prolific has more
limited options in terms of the annotation interface, but the qualification of
workers is claimed to be higher than on MTurk.3 Additionally, we employ a
group of expert annotators (Ph.D. students) who have been trained to perform
this annotation task; they also use the MTurk platform, but in sandbox mode,
i.e., without receiving payment.

5.3.3 Task Configurations
Table 5.1 shows the different task configurations we experiment with. The
paragraph-based annotation task, which is regarded as the cognitively more de-
manding variant, is performed with workers from both crowdsourcing platforms
as well as with expert annotators. The sentence-based variant of the task is
executed only on MTurk. All tasks on MTurk are performed with both regular

1https://www.mturk.com/
2https://app.prolific.co/
3https://www.prolific.co/prolific-vs-mturk
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Table 5.2: Inter-annotator agreements (J and Jk). The number of annotators
for every input text is shown in parentheses.

Task
Annotator J

Jk

Variant k=4 k=3 k=2

Paragraph

MTurk regular (n=5) 0.02 0.08 0.21 0.48

MTurk master (n=5) 0.18 0.35 0.53 0.73

Prolific (n=5) 0.14 0.27 0.44 0.65

Expert (m=3) 0.25 - - 0.54

Sentence
MTurk regular (n=3) 0.35 - - 0.71

MTurk master (n=3) 0.47 - - 0.76

and master workers.4 The remuneration varies depending on the platform used,
with payments on MTurk ensuring that the payment is above the US federal
minimum wage and on Prolific being determined by the recommended payment
per minute suggested on the platform. The reported numbers correspond to
the average cost of annotating one paragraph (based on the average number
of sentences per paragraph in the case of the sentence-based variant) and also
include the platform fee. The total cost of this preliminary study was $1.2k.
Table 5.1 also reports the number of workers assigned for each sample in the
given task variant, the median time taken to annotate a paragraph, and the
acceptance rate after a manual quality check. The acceptance rate is given only
to tentatively present the difficulty of different variants of the task and it is not
indicative of the quality of the final accepted annotations.

5.3.4 Quality Control
To ensure that the collected data is of the highest quality, we define several
automatic quality control criteria before the final manual verification of results.
In the paragraph-based task variant, annotations longer than 50% of the pas-
sage and annotations not contained in the intersection of the intervals chosen
by at least two other crowd workers are flagged. In the first sub-task of the
sentence-based variant, we flag submissions where fewer than one sentence or
more than 75% of sentences are chosen. Additionally, only submissions that
have at least one common sentence chosen with other crowd workers are ac-
cepted. The second sub-task applies the same quality control criteria as the
paragraph-based variant, with the maximum length of the snippet increased to
75% of the sentence. Importantly, the automatic quality control criteria are
only used to flag submissions that require additional attention. All results are
manually verified by the author of this thesis, and responses that do not meet
the task requirements are rejected.

4MTurk Master is a qualification earned through a proven track record of quality work.
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Table 5.3: Similarity against reference (expert) annotations.

Task variant Annotator F1 F1≫ F1≃

Paragraph-based

MTurk regular 0.36 0.32 0.45

MTurk master 0.54 0.60 0.61

Prolific 0.50 0.54 0.57

Sentence-based
MTurk regular 0.31 0.33 0.34

MTurk master 0.41 0.43 0.44

5.3.5 Results
We report on the inter-annotator agreement and similarity against reference an-
notations on the two topics selected for this preliminary study in Tables 5.2 and
5.3 respectively.

In the paragraph-based variant, we observe better agreement (J) between
MTurk masters than between Prolific workers, yet there is a big gap between
crowd workers and experts. The relative ordering between workers is: MTurk
masters > Prolific > MTurk regular, which also holds for the more relaxed
version of the agreement measure (Jk). We notice that for J2, the agreement
between expert annotators is lower than for MTurk masters and Prolific workers;
however, there are only 3 experts (vs. 5 crowd workers), hence it is not fair to
directly compare these numbers. The generally low agreement scores highlight
the difficulty of the task in the paragraph-based form.

On the simplified sentence-based variant, we indeed observe a much higher
agreement between MTurk workers.5 Also, the differences between regular work-
ers and masters are not as large as in the paragraph-based variant. We note
that the two task variants (sentence-based and paragraph-based) cannot be
compared directly in terms of inter-annotator agreement because the probabil-
ity of choosing the same snippets by different workers is much higher in a single
sentence than in an entire paragraph.

Table 5.3 reports on the quality of worker annotations, with respect to their
similarity to the reference (expert) annotations. These results are consistent for
all measures and are also in line with the observations made in terms of inter-
annotator agreement. Namely, MTurk masters achieve the best results, followed
by Prolific workers, and then MTurk regular workers. The same holds for MTurk
workers on the sentence-based variant of the task. We notice that the absolute
scores are much closer for paragraph- and sentence-based annotations than for
inter-annotator agreement (with sentence-based performing even slightly better
on F1≫ for regular workers). Overall, we find that the paragraph-based variant
yields higher-quality data than the sentence-based one.

5Given that MTurk masters outperformed Prolific workers in the paragraph-based variant,
sentence-based annotations are only performed on MTurk.
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5.3.6 Discussion
Our preliminary exploration of different task designs, platforms, and workers has
led us to the conclusion that the highest-quality annotations for this specific
task can be collected on the MTurk platform using a paragraph-based task
design. The main challenge in collecting snippet annotations turned out to be
the process of quality control that cannot be automated due to the nature of
this task. Even for expert annotators, who performed the task attentively, the
inter-annotator agreement is low. Therefore, a low similarity between snippets
selected by a worker and reference annotations does not imply that the worker
did an inferior job. Moving forward to collecting annotations at scale, we opt
for recruiting a smaller group of crowd workers, using a qualification task, and
working closely with them by providing continuous feedback on their work.

5.4 The CAsT-snippets Dataset

This section describes our large-scale data collection effort. We perform anno-
tations on the TREC CAsT’20 and ’22 datasets.6 Each dataset comprises of a
set of information-seeking dialogues (i.e., topics) with a sequence of questions
(i.e., queries) within each. The input to the snippet annotation task consists of
queries and corresponding passages. We consider the top 5 passages for each
query with respect to their relevance labels in the ground truth (ranging from
0 to 4). If there are fewer than 5 passages available for the query at the highest
relevance level, then we fill up the remaining slots with passages one relevance
level below. If there are more passages available, then we cluster them using
k -means clustering and pick a random passage per cluster. For example, if we
have 3 highly relevant passages for a given query and 10 relevant passages, we
choose all the passages with relevance level 4 and populate the remaining two
places by splitting the passages with a relevance level 3 into two clusters and
then choosing a random passage from each cluster. Selecting the passages for an-
notation this way ensures that they are both relevant and diverse. Even though
we mostly consider highly relevant and relevant passages, some of them do not
contain a direct answer to the question, which makes the snippet annotation
task even more challenging. For each of the 371 queries in the TREC CAsT’20
and ’22 datasets, the top 5 passages are annotated by 3 crowd workers, resulting
in a total of 1,855 query-passage pairs.

5.4.1 Setup
The annotation task was released only to a small group of trained crowd workers,
who were selected through a qualification task. The qualification task contained
a detailed description of the problem at hand, examples of correct annotations,
a quiz, and 10 query-passage pairs to be annotated; it was made available to

6The 2019 dataset has relatively low complexity compared to these two, while the 2021
dataset provides relevance assessments on the level of documents instead of passages.
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both master and regular MTurk workers to reach a bigger audience. From the
20 workers who completed the qualification task, we chose 15 that had the high-
est quality results (independently of their MTurk Master qualification). Each
worker received feedback on the provided responses and was given an oppor-
tunity to ask their own questions about the task. Several rounds of discussion
that emerged from the qualification task resulted in an extended set of guide-
lines addressing the challenging aspects of the annotation task. They contain
detailed instructions for crowd workers, a list of tricky cases along with recom-
mendations on how to proceed, a brief description of the problems that we plan
to address using the collected data, and toy examples illustrating how much
context should be included in the span. The extended guidelines are available
in Appendix B.

The process of data collection was divided into daily batches and conducted
over approximately two weeks. The reason was to both avoid worker fatigue
and also to allow for continuous feedback along the way. Each batch contained
questions about one specific topic, which amounts to 46 query-passage pairs on
average, and was annotated by 3 different workers. Workers received $0.3 for
each query-passage pair. A bonus of $2 was paid for every batch completed
within 24 hours upon release. The total cost of large-scale data collection was
$2.1k.

The training of the annotators did not end at the qualification task but
continued throughout the whole data collection process. Crowd workers were
provided with feedback after each submitted batch. From each batch, random
data samples with low agreement were selected and verified manually by an
expert (the author of this thesis). Incorrect data annotations were flagged and
discussed individually with crowd workers. After each batch, general comments
and suggestions were shared with all workers. We used Slack7 as the main
communication platform; there, workers could also share challenging cases and
benefit collectively from discussions and from expert guidance. The Slack chan-
nel was widely used by crowd workers from their own initiative through the
whole data annotations process to brainstorm about tricky query-passage pairs
and align on their understanding of the task.

5.4.2 Statistics
In comparison to the results of the preliminary study (cf. Table 5.2) on the
same set of queries, we find that the inter-annotator agreement (J=0.38 and
J2 =0.62) exceeds even that of expert annotations and the similarity with expert
annotations (F1 =0.54) matches those of the best-performing MTurk master
workers. These results indicate that the collected data is of high quality and
attest to the success of our annotation setup with continuous feedback.

Table 5.4 provides a comparison against other related datasets. We note that
there are not only more snippets annotated for each input text in our dataset,

7https://slack.com/
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Table 5.4: Comparison against other datasets.

Dataset Input text
Avg. snippet # snippets per

length (tokens) annotation

CAsT-snippets Paragraph 39.6 2.3

SaaC (Ren et al., 2021) Top 10 passages 23.8 1.5

QuaC (Choi et al., 2018) Wikipedia article 14.6 1

but they are also longer on average, which follows from the information-seeking
nature of queries.

We note that there is a number of query-passage pairs where annotators did
not find any snippet relevant to the query, despite the passage being labeled as
relevant by TREC assessors (77 such passages selected by all three annotators
and 111 selected by two of the annotators).

5.4.3 Feedback from Crowd Workers
The close collaboration with crowd workers at every stage of data annotation
has revealed several interesting aspects concerning the problem of snippet anno-
tations. One of the most significant challenges was determining the appropriate
amount of context to include in each span, striking a balance between con-
ciseness and being self-contained. This issue is closely related to “conditional
responses,” where the span answers the question only under some specific con-
dition or within a related situation (e.g., a medical condition is mentioned as
a symptom, whereas the user was searching for treatment of that condition).
Context also needs to be considered for justification of selected answers, par-
ticularly for yes/no responses. Moreover, temporal considerations, such as time
mismatches between queries and passages, and the subjectivity of statements in
the passage further compounded the challenge.

The second challenge identified by the crowd workers pertains to questions
for which only a partial answer can be found in the passage. Deciding whether
a span partially answers a question or is only somewhat relevant and should
not be selected proved to be highly subjective. Additionally, the crowdsourcing
process revealed that even passages with high relevance scores in the ground
truth sometimes do not contain the exact answer to the question, resulting in
cases of unanswerability.

The third noteworthy observation highlighted by several crowd workers con-
cerns the background knowledge required to select a correct span or determine
that the passage does not answer the question. This raises questions about
the necessary general/expert knowledge required to annotate responses. Crowd
workers worked on batches containing questions from specific areas, and while
the TREC CAsT dataset assumes that the information needed to understand the
question is included in the conversational context, some contextual knowledge
may be missing if the system cannot find a highly relevant passage containing
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Table 5.5: Statistics for the CAsT-answerability dataset.

Answerable Unanswerable

#question-sentence pairs (train+test) 6,395 19,043

#question-passage pairs (train+test) 1,778 1,932

#question-ranking pairs (test) 4,035 504

the answer. Moreover, even with access to previous questions and responses
within a given topic, crowd workers still encounter challenges when annotating
data from topics outside their areas of interest and expertise.

Our task design also included a confidence field for each annotation task,
allowing workers to express their level of confidence in the selected spans. We
analyzed the collected data to determine whether high confidence levels among
workers corresponded to high inter-annotator agreement. Surprisingly, we did
not observe any significant relationship between the two measures. We suspect
that the confidence scores reported by crowd workers are more closely related
to their familiarity with the topic in a given batch.

5.5 The CAsT-answerability Dataset

To prevent responses from being generated based on passages that lack rele-
vant information—potentially leading to hallucinations—we aim to detect such
cases in advance. To predict answerability in CIS dialogues, we build upon the
CAsT-snippets dataset, which contains snippet-level annotations for the top
5 retrieved results. To balance the collection, we also include 5 randomly se-
lected non-relevant passages to each question. The resulting dataset, named
CAsT-answerability, contains around 1.8k answerable and 1.9k unanswerable
question-passage pairs. We further consider answerability on the level of sen-
tences and on the level of rankings, as follows. For sentence-level answerability,
we leverage annotations of information nuggets from the CAsT-snippets dataset
as follows: each sentence that overlaps with an information nugget, as per an-
notations in the originating CAsT-snippets dataset, is labeled as 1 (answer in
the sentence), otherwise as 0 (no answer in the sentence).

For ranking-level answerability, which is the ultimate task we are addressing,
we consider different input rankings, i.e., sets of n = 3 passages, for the same
input question. Specifically, for each unique input test question (38), we gener-
ate all possible n-element subsets of passages available for this question (both
containing and not containing an answer), thereby simulating passage rankings
of varying quality. These rankings represent inputs with various degrees of dif-
ficulty for the same question, ranging from all passages containing an answer to
a single passage with an answer to “no answer found in the corpus.” This yields
a total of 4.5k question-ranking pairs, of which 0.5k are unanswerable.8

8Examples of answerability scores on various levels are provided in Appendix B.
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Figure 5.4: Overview of our answerability detection approach.

Overall, our CAsT-answerability dataset contains binary answerability labels
on three levels: sentence, passage, and ranking. Sentence- and passage-level an-
swerability is divided into train (90%), and test (10%) portions; the splitting is
done on the question level to avoid information leakage. Ranking-level answer-
ability has only a test set. See Table 5.5 for a summary.

5.6 Answerability Detection

The challenge of answerability in CIS arises from the fact that the answer is
typically not confined to a single entity or text snippet, but rather spans across
multiple sentences or even multiple passages. Note that answerability extends
beyond the general notion of relevance and asks for the presence of a specific
answer. At the core of our approach is a sentence-level classifier that can dis-
tinguish sentences that contribute to the answer from ones that do not. These
sentence-level estimates are then aggregated on the passage level and then fur-
ther on the ranking level (i.e., set of top-n passages) to determine whether the
question is answerable; see Figure 5.4. Operating on the sentence level is a de-
sign decision that has the added benefit that a future response generation step
may take a filtered set of sentences that contribute to the final answer as input.

5.6.1 Answer-in-the-Sentence Classifier
The answer-in-the-sentence classifier is trained on sentence-level data from the
train portion of the CAsT-answerability dataset. In some of the experiments,
this data is augmented by data from the SQuAD 2.0 dataset (Rajpurkar et al.,
2018) to provide the classifier with additional training material and thus guid-
ance in terms of questions that can be answered with a short snippet contained
in a single sentence. Data from SQuAD 2.0 is downsampled to be balanced in
terms of the number of answerable and unanswerable question-sentence pairs.
The classifier is built using a BERT transformer model with a sequence classi-
fication head on top.9 Each data sample contains question [SEP] sentence

9https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertFor
SequenceClassification
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as input and a binary answerability label. The output of the classifier is the
probability that the sentence contains (part of) the answer to the question.

5.6.2 Aggregation of Sentence-level Answerability Scores
In reality, answers are not confined to a single sentence but can be spread across
several passages. We thus need a method to aggregate results obtained from the
sentence-level classifier to decide whether the question can be answered given
(1) a particular passage or (2) a set of top-ranked passages, referred to as a
ranking.

We consider two simple aggregation functions, max and mean, noting that
more advanced score- and/or content-based fusion techniques could also be ap-
plied in the future (Kurland and Culpepper, 2018). Intuitively, max is expected
to work particularly well for factoid questions where the answer is relatively
short and usually contained in a single sentence, while mean should capture the
cases where pieces of the answer are spread over several sentences within the
passage or across passages. The aggregated answerability score for a given pas-
sage is compared against a fixed threshold; passages with an aggregated score
exceeding this threshold are identified as containing the answer. We set the
threshold values on a validation partition (10% of the dataset, sampled from
the training partition); 0.5 for max and 0.25 for mean.

An analogous procedure is repeated for the top n = 3 passages in the ranking
to decide on ranking-level answerability. Here, the aggregation methods take
the passage-level answerability scores as input (obtained using max or mean
aggregation of sentence-level probabilities). The resulting values are compared
against a fixed threshold (using the same values as for passage-level aggregation)
to yield a final ranking-level answerability prediction.

5.7 Answerability Prediction Results

Table 5.6 presents the answerability results on the sentence, passage, and rank-
ing levels on the test partition of CAsT-answerability in terms of accuracy.

Does data augmentation help answerability detection? On the sen-
tence level, we find that augmenting the CAsT-answerability dataset with ad-
ditional training examples from SQuAD 2.0 improves performance. These im-
provements also carry over to the first aggregation step on the passage level.
However, the best ranking-level results are obtained by aggregating results ob-
tained from the classifier trained only on CAsT-answerability. It may result from
the fact that SQuAD 2.0 training data focuses on questions with short-span an-
swers (like entities or numbers) confined to a single sentence. This could mislead
the classifier to overlook answers spanning multiple sentences or passages. Thus,
while sentence-level answerability prediction benefits from augmented data, this
does not translate to effective passage or ranking-level answerability prediction.
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Table 5.6: Answerability detection results in terms of classification accuracy.
The best scores for each level are in boldface. For the augmented classifier
(rows 5–8), significant differences against the respective method (rows 1–4) are
indicated by ∗. ChatGPT results are tested against the best classifier in rows
1–8. We use McNemar’s test with p < 0.05.

Classifier
Sentence Passage Ranking

Acc. Aggr. Acc. Aggr. Acc.

CAsT-answerability 0.752

Max 0.634
Max 0.790

Mean 0.891

Mean 0.589
Max 0.332

Mean 0.829

CAsT-answerability

augmented with

SQuAD 2.0

0.779∗

Max 0.676∗ Max 0.810∗

Mean 0.848∗

Mean 0.639∗ Max 0.468∗

Mean 0.672∗

ChatGPT passage-level (zero-shot) 0.787∗ T=0.33 0.839∗

T=0.66 0.623∗

ChatGPT ranking-level (zero-shot) 0.669∗

ChatGPT ranking-level (two-shot) 0.601∗

Which of the two aggregation methods performs better? In all cases,
max aggregation on the passage level followed by mean aggregation on the
ranking level gives the best results. Intuitively, this configuration captures single
sentences with high answerability scores in individual passages (max aggregation
on passage level) that give a high average score for the whole ranking (mean
aggregation on ranking level) for answerable questions.

How competitive are these baselines in absolute terms? Ours is a
novel task, with no established baselines to compare against. However, us-
ing a large language model (LLM) for generating the final response from the
top retrieved passages is a natural choice. Therefore, for reference, we com-
pare against a state-of-the-art LLM, using the most recent snapshot of GPT-3.5
(gpt-3.5-turbo-0301) via the ChatGPT API. We consider two settings: given
a passage (analogous to the passage-level setup) and given a set of passages as
input (analogous to the ranking-level setup). We prompt the model to verify
whether the question is answerable in the provided passage(s) and return 0 or 1
accordingly.10 In the passage-level setup, the passage-level predictions returned

10The prompts are available in Appendix B.
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by ChatGPT are aggregated using fixed thresholds to obtain a ranking-level
prediction. The max aggregation boils down to checking whether any of the
passages is predicted to contain the answer. In the case of mean aggregation,
a threshold of 0.33 or 0.66 (based on the fact that binary values are returned
for passage-level answerability predictions) would mean that 1 or 2 out of 3
passages, respectively, contain the answer. In the ranking-level setup, we ex-
periment with both a zero-shot setting, where neither examples nor context is
given to the model, and a two-shot setting containing a question followed by
two sentences (one positive and one negative example) extracted from the pas-
sage. We observe that the passage-level answerability scores of ChatGPT are
higher than ours, but after ranking-level aggregation, it is no longer the case.
Further, performing the ranking-level task directly results in significantly lower
performance. These results indicate that LLMs have a limited ability to detect
answerability without additional guidance. Our baseline methods trained on
small datasets and based on simple classifiers with multi-step results aggrega-
tion turn out to be more effective for answerability prediction and thus represent
a strong baseline.

5.8 Conclusions

We have introduced two datasets for conversational information seeking based
on TREC CAsT’20 and ’22 datasets: (1) CAsT-snippets, containing snippet-
level annotations of top passages, and (2) CAsT-answerability, with answerabil-
ity labels on sentence, passage and ranking levels. To answer RQ3.1 (How to
identify core information units in the relevant passages that need to be included
in the response?), we conducted a preliminary study to explore different task
designs, platforms, and worker pools for snippet annotation. The insights from
this study informed our decision to collaborate closely with a pool of highly
engaged crowd workers, releasing tasks in daily batches and providing continu-
ous feedback. The answerability labels in the CAsT-answerability dataset are
derived from the information nugget annotations.

Our direct communication with crowd workers throughout the data anno-
tation process revealed multiple challenges that need to be addressed in con-
versational response generation: (1) Selecting spans for questions when only a
partial answer is present is challenging and appears to be highly subjective. (2)
Temporal considerations may exclude some spans as they are not valid answers
given the time specified in the query. However, assessing the temporal validity
of text may be challenging based solely on short text passages without a larger
context. (3) Passages originating from blogs or comments very often contain
subjective opinions. Should such subjective opinions be marked up as answers?
(4) What kind of background knowledge should be assumed when the passage
does not contain a direct answer but the answer may be inferred from the text?
(5) How much content is needed for open-ended questions? (6) When is evidence
or additional information needed for a factoid question and when is an entity
alone sufficient as an answer?
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Unanswerable questions pose a challenge in conversational information seek-
ing. The utility of the CAsT-snippets dataset has been demonstrated on the
task of unanswerability detection. To answer RQ2.2 (How to detect factors
contributing to incorrect, incomplete, or biased responses?), we have presented
a baseline approach based on the idea of sentence-level answerability classifica-
tion and multi-step results aggregation and evaluated multiple instantiations of
this approach with different configurations on the CAsT-answerability dataset.
Despite their simplicity, our baselines have been shown to outperform a state-
of-the-art LLM on the task of answerability prediction.

In this chapter, we explored the use of snippet-level answer annotations for
detecting unanswerable questions. However, this idea of operating on snippets
(or information nuggets) has many additional applications related to enhancing
the reliability and factual accuracy of responses in CIS. It supports the devel-
opment of answer generation methods that are grounded in relevant snippets
in paragraphs, it allows for the automatic evaluation of the generated answers
in terms of completeness (see Chapter 6), and it enables more granular source
attribution (see Chapter 7).



Chapter 6

Grounded Response Generation

If you do not know where you come from, then
you don’t know where you are, and if you don’t
know where you are, then you don’t know where
you’re going. And if you don’t know where
you’re going, you’re probably going wrong.

— Terry Pratchett

Current commercial generative search engines often appear informative but
frequently contain unsupported statements and inaccurate citations, highlight-
ing the difficulty of achieving grounded responses (Liu et al., 2023a). Injecting
evidence into LLM prompts for retrieval-augmented generation (RAG), similar
to a retrieve-then-generate pipeline, significantly influences answers to fully mit-
igate hallucinations or ungrounded responses in systems like ChatGPT (Koop-
man and Zuccon, 2023; Lewis et al., 2020). However, redundant information
and overly long contexts can lead to the “lost in the middle” problem, where
models experience significantly degraded performance when they need to access
relevant information in the middle of long contexts (Liu et al., 2024). Conse-
quently, post-retrieval efforts focus on selecting essential information, emphasiz-
ing critical sections, and shortening the context to avoid information overload
diluting key details with irrelevant content (Gao et al., 2023b).

In conversational information-seeking (CIS) systems that limit responses to
a few sentences, information about the scope of the answer and the extent to
which it is covered is often hidden from the user. In the space of complex, often
exploratory queries, there exists a natural trade-off between the completeness
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and succinctness of the responses. The extent to which a given topic is covered
in the response, both in terms of breadth of diverse information and in-depth
details, needs to be determined by the system based on the retrieved sources,
user preferences, and previous interactions (Gienapp et al., 2024). The infor-
mation about the fraction of answers covered is essential for users to decide on
the following interactions with the system (Azzopardi et al., 2018). A system
that generates the response and is aware of the part of relevant search space
the information covers can suggest possible follow-up questions, for addressing
additional details or aspects that did not fit in the provided response due to
length constraints but may be of interest to the users. System transparency in
this regard can help the user navigate the search space and facilitate interaction
with the system when addressing complex information needs.

In this chapter, we aim to address the following research question: How to
ensure the grounding of responses in the retrieved sources? (RQ3.2).
We introduce a modular pipeline for Grounded Information Nugget-based GE-
neration of Conversational Information-Seeking Responses (GINGER) that op-
erates on information nuggets—minimal, atomic units of relevant information
(Pavlu et al., 2012)—to ensure that responses are rooted in factual evidence
and easily verifiable. The multistage pipeline encompasses nugget detection,
clustering, ranking, summarization of top clusters, fluency enhancement, and
follow-up question generation based on uncovered aspects of the topic. Our
approach uniquely addresses three key challenges in CIS:

• Grounding : By operating on information nuggets throughout the pipeline,
we ensure the grounding of the final response in the source passages and
enable easy verifiability of source attribution.

• Response completeness: Our method offers control over response com-
pleteness, by ensuring the coverage of a required number of query facets
in the response within a predefined length limit. This allows adaptability
to user preferences, desired diversity, or conversational context.

• Follow-up questions: By explicitly modeling information nuggets related
to different facets of the query, GINGER can suggest relevant (and answer-
able) follow-up questions based on facets that could not be covered in the
response due to length constraints.

These features can significantly enhance the user experience in conversational
search scenarios, mitigating the potential information loss when transitioning
from traditional SERP-based interactions.

We introduce a competitive response generation baseline inspired by retrieval-
augmented open-domain question answering to compare with GINGER, answering
the following research question: What are strong baselines for response
generation in CIS systems? (RQ1b). We evaluate our response generation
method using the TREC CAsT’20 and ’22 datasets through both automatic
and human evaluation. For automatic evaluation, we assess response ground-
ing, faithfulness, answer relevance, and completeness using natural language
inference and LLM-based RAG evaluation techniques. For human evaluation,
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we conduct side-by-side comparisons via crowdsourcing, measuring coherence,
correctness, sufficiency, conciseness, engagement, and completeness of responses.
Additionally, we extend our evaluation to the TREC RAG’24 dataset, analyzing
the core response generation capabilities of GINGER using the AutoNuggetizer
evaluation framework introduced in the track (Pradeep et al., 2024). We per-
form an ablation study to examine the impact of different system components
and compare GINGER’s results against the top-performing systems submitted to
the RAG’24 track.

All the resources developed in this chapter are available online: https:
//github.com/iai-group/ginger-response-generation/. Additional
results and analysis can be found in Appendix C.

This chapter is based on the following papers:

Łajewska and Balog (2025): GINGER: Grounded Information Nugget-
Based Generation of Responses, SIGIR ’25

Łajewska and Balog (2024b): The University of Stavanger (IAI) at the
TREC 2024 Retrieval-Augmented Generation Track, TREC ’24

Łajewska and Balog: X-GINGER: Explainable and Grounded Conversa-
tional Response Generation [submitted]
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6.1 Related Work

Response Grounding Existing search engine responses often exhibit high
fluency and perceived utility but frequently contain unsupported statements or
inaccurate citations (Liu et al., 2023a) (see Section 2.2.2). Despite advancements
in LLMs, abstractive summaries still suffer from hallucinations and factual er-
rors (Ladhak et al., 2022; Tang et al., 2023; Falke et al., 2019; Tang et al., 2022;
Ji et al., 2023; Koopman and Zuccon, 2023). Source attribution, which measures
the accuracy and support of generated statements through citations (Rashkin
et al., 2021), and verifiability, which requires that each statement is fully sup-
ported by in-line citations, are key concepts to address these challenges (Liu
et al., 2023a; Schuster et al., 2023). Systems with high citation precision might
lack fluency, while those with lower precision risk misleading users by appearing
more fluent and relevant (Liu et al., 2023a). To ensure high citation preci-
sion while maintaining fluency, we propose a method that extracts and groups
atomic statements from sources, summarizing them with LLMs. Statements are
referred to as “atomic/semantic content units” (Nenkova et al., 2007; Liu et al.,
2023b) or “information nuggets” in traditional IR (Pavlu et al., 2012; Sakai,
2023). The Knowledge Selection of Large Language Models (KS-LLM) method,
which identifies valuable information from evidence documents using triples and
evidence sentences, is similar to using information nuggets for response gener-
ation but leaves knowledge synthesizing to LLMs, which are prone to factual
errors (Zheng et al., 2024).

Follow-up Questions Clarifying questions refine the understanding of the
initial query, while follow-up questions build upon the given information to
explore related topics further. Nevertheless, they serve the same goal of sup-
porting the user in navigating search space and creating a more effective and
user-focused conversational experience. A common approach for generating clar-
ifying questions is based on query facet detection (Wang, Zhenduo et al., 2023;
Samarinas et al., 2022). In this work, we explicitly model facets of the response
and generate follow-up questions based on those that cannot be included due to
length constraints.

TREC RAG’24 The RAG track at TREC has been launched in 2024 with
a focus on combining retrieval methods for finding relevant information within
large corpora with LLMs to enhance the ability of systems to produce relevant,
accurate, and contextually appropriate content (Pradeep et al., 2024). The track
is divided into three tasks: Retrieval (R), which involves ranking and retriev-
ing the most relevant segments from the corpus; Augmented Generation (AG),
which requires generating RAG answers using top-k relevant segments from
a baseline retrieval system provided by organizers; and Retrieval-Augmented
Generation (RAG), where participants generate RAG answers with attribu-
tions using their retrieval system and chunking technique. Our work focuses
on the augmented generation task, similar to in-context retrieval augmented
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Figure 6.1: High-level overview of our nugget-based response generation
pipeline, called GINGER.

language models without modifying model weights (Ram et al., 2023; Muhlgay
et al., 2023). A trend toward retrieval context curation is evident in TREC
RAG’24 submissions. A common approach to AG involves generating responses
based on the top 20 retrieved documents, often in a single step using proprietary
models, with an optional post-processing phase. Several submissions adopt a
multi-step approach, such as segment clustering followed by extracting, combin-
ing, and condensing relevant information (Fröbe et al., 2024). Similarly, some
approaches emphasize verifying key facts across multiple documents, eliminat-
ing redundant content, prioritizing facts by relevance, and enhancing clarity
and coherence (Farzi and Dietz, 2024b). In this work, we take this a step fur-
ther by not only curating the LLM context but also decomposing the response
generation process to mitigate the negative effects of irrelevant and redundant
information by operating on atomic pieces of information.

6.2 GINGER: Nugget-Based Multi-Step Response
Generation

We present GINGER, a novel method for generating grounded conversational re-
sponses by operating on information nuggets. GINGER explicitly models various
facets of the query based on retrieved information and generates a concise re-
sponse that adheres to length constraints. Additionally, it proactively suggests
follow-up questions to help users navigate complex information needs, based on
aspects that are not covered in the response due to the length limit, inherently
supporting mixed-initiative conversations.

Generating grounded, completeness-aware responses is a multistage process,
illustrated in Figure 6.1, that includes: (1) detecting information nuggets in top
relevant passages, (2) clustering detected nuggets, corresponding to different
facets of the query, (3) ranking the clusters with respect to their relevance to
the query, (4) summarizing the top-ranked clusters to be included in a final
response, (5) refining the response to improve its fluency and coherence, and (6)
generating a follow-up question based on the top facet cluster not included in
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the response. Steps 1-3 aim at curating the context for response generation to
mitigate the “lost in the middle” problem related to LLMs, focusing mostly on
the beginning and the end of long texts (Liu et al., 2024; Gao et al., 2023b). By
operating on information nuggets in all intermediate components of the pipeline
we ensure the grounding of the final response in the source passages, ensuring
that all information in the final response is entailed by the source (Falke et al.,
2019).

We assume that a de-contextualized query and the corresponding ranking
of passages with relevance scores are provided as input, as query rewriting and
passage retrieval are not the focus of this work. The prompts used by different
components of the system are made available in Appendix C.

6.2.1 Detecting Information Nuggets
We aim to automatically detect information nuggets using an LLM. The LLM is
prompted to annotate input passages with information nuggets containing the
key information that answers the query. Specifically, it is instructed to copy the
text of the passage and place the annotated information nuggets between specific
tags, without modifying the passage content or adding any extra symbols.

6.2.2 Clustering Information Nuggets
Next, we proceed to cluster the detected information nuggets with respect to
different facets of the query topic. Clustering information nuggets has two main
purposes. First, it addresses the problem of information redundancy, which
originates from the fact that information nuggets and their variants can ap-
pear in multiple documents in different forms but still convey the same in-
formation (Pavlu et al., 2012). Second, by clustering redundant information
nuggets, we attempt to increase the information density of the generated in-
formation (Adams et al., 2023). Nugget clustering is challenging due to the
semantic closeness of nuggets within the same topic. We address this by em-
ploying a neural topic modeling technique, BERTopic (Grootendorst, 2022), and
adjusting its sensitivity on the validation partition of the CIS dataset in order to
distinguish nuanced differences between nuggets. Ideally, information nuggets
in each cluster represent specific facets of the answer to the query.

6.2.3 Ranking Facet Clusters
This step in the pipeline is responsible for the ranking of facet clusters with
respect to the input query to determine which clusters are most important
and should be prioritized for inclusion in the response, and which may be
skipped (Gao et al., 2023b; Liu et al., 2024). Given the relatively low num-
ber of facet clusters we observe in practice, we can employ more expensive
reranking techniques relying on pairwise comparisons to maximize effectiveness.
Specifically, we employ pairwise reranking using duoT5 (Pradeep et al., 2021)
by joining the nuggets in clusters and treating them as individual passages.
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6.2.4 Summarizing Facet Clusters
The response is made up of the summaries of the top n clusters, where n is the
facet threshold. This threshold controls the desired response length and may be
adjusted based on the information need, task context, or user preferences. Each
cluster of information nuggets is summarized independently as a single sentence
with the maximum number of words specified in the prompt, to stop the LLM
from generating very long sentences (Goyal et al., 2023). We follow the prompt
design used for short story summarization (Subbiah et al., 2024) to generate
summaries that are short, concise, and only contain the information provided.
Previous steps in the pipeline ensure that the most relevant information from
retrieved passages is synthesized and the generated summaries are attributed to
the sources, allowing summarization to operate in a shorter but more relevant
context.

6.2.5 Improving Response Fluency
Our modular approach results in a response that is a concatenation of inde-
pendent summaries of facet clusters, that may lack fluency and consistency. To
mitigate this shortcoming, we include an additional step to rephrase the gener-
ated response with the help of an LLM. The LLM is prompted not to modify
the provided information, nor include any additional content.

6.2.6 Follow-up Question Generation
Follow-up questions are generated with an LLM by prompting it to generate a
follow-up question based on the original query and the provided aspect of the
topic. The follow-up question should start with “Would you like to learn more
about ...” or an equivalent with the same meaning (Sekulić et al., 2021). The
follow-up question targets the aspect of the n + 1th facet cluster, that is, the
most relevant facet cluster that is not included in the response. This setup
ensures that the follow-up question is both relevant to the query topic and is
answerable.

6.3 Experimental Setup

This section presents the dataset and baselines used in our evaluation and pro-
vides technical details on the implementation of GINGER.

6.3.1 Dataset
We base our evaluation on the test partition of the CAsT-snippets dataset (see
Section 5.4). It comprises 44 queries from the TREC CAsT’20 and ’22 bench-
marks (Dalton et al., 2020; Owoicho et al., 2022) along with information nugget
annotations for the top 5 most relevant passages. Queries with no or only one
nugget are excluded from the evaluation, as they are either incomparable to the
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baseline or fall under the problem of query unanswerability, which is covered in
Chapter 5.

This work focuses on the problem of response generation and assumes a
ranked list of passages to be provided, along with the query, as input. However,
the relevance of these passages impacts how well the method grounds responses
in specific facts; the absence of direct evidence increases the likelihood of un-
supported statements (Liu et al., 2023a). Therefore, we consider three types
of input rankings to control for their quality. Relevant represents an idealized
scenario where the input consists of the top 5 most relevant passages; this cor-
responds to the setting where the most relevant passages have been correctly
retrieved from the corpus. We use this as our default setting, ensuring that
we evaluate methods based on their core capabilities, independent of poten-
tial noise introduced by passage ranking. Irrelevant corresponds to a situation
where the answer is not present in the corpus or the retriever is unable to find
it. Here, the input contains 5 passages with low relevance scores. In both
cases, the passages are selected based on the relevance judgments in the TREC
CAsT benchmark. Finally, retrieved represents the real-world case where the
top 5 passages from a competitive passage ranker are considered. Specifically,
we use a multi-stage retrieval system that employs a T5-based query rewriter
(fine-tuned on the CANARD dataset and expanded with terms from pseudo-
relevance feedback), BM25 for first-pass retrieval, and reranking performed with
MonoT5 and DuoT5.

Additional analysis is performed on the Augmented Generation task of TREC
RAG’24 (Pradeep et al., 2024) to evaluate GINGER against the most recent
response generation systems. In all experiments, we utilize the top relevant
passages (from MS MARCO V2.1 segment collection) from a fixed list of 100
retrieved results provided by the organizers for all 301 queries. This setup rep-
resents the real-world case with the top passages retrieved by a competitive
passage ranker. To account for the amount of input information, we consider
three sizes of input rankings containing 5, 10, or 20 passages.

6.3.2 Baseline
The focus of our method is twofold: (1) the generation of grounded responses,
and (2) the generation of useful follow-up questions. To the best of our knowl-
edge, there is no established approach for the combination of these tasks in a
CIS setting. Therefore, we compare our system against methods for grounded
open-domain QA (Ren et al., 2025) and clarifying question generation (Samari-
nas et al., 2022) as effective solutions for addressing response and follow-up
question generation, respectively.

Grounded Response Generation

We aim to compare our proposed method against models that use external
knowledge in the generation process. We exclude standard RAG models trained
end-to-end with the retrieval component (Lewis et al., 2020; Guu et al., 2020;
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Izacard et al., 2023) as our focus is on grounded response generation with a
fixed retriever to enable the evaluation of entailment in retrieved facts. We also
refrain from using LLM-based generation approaches that rely solely on internal
model knowledge (Sun et al., 2022) due to our emphasis on grounding.

We explored the performance of grounded text generation, text summariza-
tion, and open-domain QA models in terms of faithfulness on the validation
partition of the CAsT-snippets dataset to select the most competitive baseline
for our scenario. We found that a pre-trained model proposed for grounded
text generation in dialogues that rely on external knowledge (Peng et al., 2022)
tended to copy words or phrases directly from the source text, exhibiting a more
extractive behavior, which is not desired in a CIS setting where the information
from multiple sources needs to be aggregated. Considerably better results in
terms of coherence and naturalness on the validation sample were observed when
using the approach proposed for open-domain QA in a retrieval-augmented set-
ting with an off-the-shelf LLM without further training (Ren et al., 2025; Ram
et al., 2023; Muhlgay et al., 2023). The most recent at the time of writing snap-
shot of OpenAI’s GPT-4 model (gpt-4-turbo-2024-04-09) that achieves the
highest scores in terms of faithfulness on the task of summary generation (Sub-
biah et al., 2024) and is the most commonly used LLM architecture in RAG (Ren
et al., 2025; Ram et al., 2023; Shi et al., 2024; Huang and Huang, 2024; Muhlgay
et al., 2023) is therefore used as a baseline for grounded response generation.
Our prompt is inspired by retrieval-augmented QA LLM instruction proposed
in Ren et al. (2025). The length of the generated summary is limited to around
100 words and 3 sentences, which is controlled in task model prompt (Goyal
et al., 2023).1 The second baseline uses GPT-4 with Chain-of-Thought prompt-
ing (Wei et al., 2022) and one ICL demonstration created manually based on a
sample from TREC CAsT’22 dataset (baseline_CoT-top5).

Follow-up Question Generation

As a baseline for follow-up question generation, we employ a well-established
method for generating clarifying questions. It comprises two steps: (1) facet
extraction and (2) template-based question generation. For the first step, we ag-
gregate facets extracted using sequence labeling and extreme multi-label classifi-
cation, along with facets generated using auto-regressive text generation, based
on relevance and diversity (Samarinas et al., 2022). Combining facets generated
by diverse methods, which yield complementary results, leads to significant im-
provements (Samarinas et al., 2022), resulting in a competitive baseline. For
step (2), we follow a query- and facet-conditioned clarifying question generation
method (Sekulić et al., 2021). However, instead of the fine-tuned GPT-2 model
used in the original paper, we utilize the latest version of GPT-4 for improved
fluency and naturalness. Additionally, we resort to a widely used template-
based approach for clarifying question construction, providing the LLM with a
template to ensure that the specific facet is the focus of the generated ques-

1Prompt is available in Appendix C.
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tion (Zamani et al., 2020; Sekulić et al., 2022). We use the same follow-up
question template in both the baseline and our method (see Section 6.3.2), with
the only difference being the facet included in the prompt. This allows us to
isolate and evaluate the quality of the facet itself.

6.3.3 GINGER Implementation
The modular design of GINGER allows for independent implementation of indi-
vidual components of the pipeline. The detection of information nuggets is per-
formed with GPT-4, with the query and passage as input. Information nuggets
clustering is based on BERTopic, with parameters set experimentally on samples
from the validation partition.2 The ranking of information nugget clusters is
done using duoT5, implemented based on the HuggingFace transformers library
and the castorini/duot5-base-msmarco model.3 The top 3 ranked informa-
tion nuggets clusters are passed to query-based summarization (Tombros and
Sanderson, 1998) performed with GPT-4. The length of each cluster summary is
limited to one sentence and around 35 words and specified in the prompt (Goyal
et al., 2023). To generate a follow-up question based on the most relevant infor-
mation not included in the response, we utilize GPT-4 with the same prompt
as in the baseline method (see Section 6.3.2). The aspect of the topic provided
in the prompt is the summary of the most relevant information cluster that is
not included in the response. If there are less than 4 clusters for a given query,
we use the last cluster summary from the ranking. In all methods, GPT-4
corresponds to the most recent snapshot of GPT-4-turbo (gpt-4-turbo-2024-
04-09) accessed via the OpenAI API.

6.4 Evaluation Methodology

We conduct automatic evaluations of response grounding, faithfulness, answer
relevance, and completeness, alongside human evaluations of coherence, correct-
ness, sufficiency, conciseness, engagement, and completeness. To the best of our
knowledge, there is no established framework for joint evaluation of response and
follow-up question generation. Therefore, we propose a set of automatic metrics
inspired by the evaluation of grounded summaries, LLM-based RAG evaluation,
and nugget-oriented properties of our method. For human evaluation, we follow
the SWAN framework proposed for conversational systems (Sakai, 2023).

6.4.1 Automatic Evaluation
Automatic evaluation of responses is limited to reference-free metrics, without
comparing to a ground truth (Gienapp et al., 2024), in the absence of CIS

2If fewer than four information nuggets are identified in the top n passages, we skip
clustering; instead, we treat each nugget as an independent cluster and proceed with standard
ranking and summarization.

3https://huggingface.co/castorini/duot5-base-msmarco
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datasets with ground-truth responses. Inspired by human evaluation protocols
for summary salience that use fine-grained content units (Liu et al., 2023b)
corresponding to Atomic Content Units in the Pyramid protocol (Nenkova and
Passonneau, 2004), our automatic evaluation of grounding and completeness
operates on information nuggets annotated in the CAsT-snippets dataset.

Grounding

In the TREC’06 QA task and the Pyramid method, answers and summaries
are evaluated based on their coverage of relevant information nuggets or Se-
mantic Content Units (SCUs), with a focus on recall to derive overall system
scores (Nenkova and Passonneau, 2004; Shapira et al., 2019; Bhandari et al.,
2020). We follow a similar approach and evaluate response grounding by assess-
ing the entailment of each generated response against the automatically detected
information nuggets in input passages (Pavlu et al., 2012; Liu et al., 2023b; Falke
et al., 2019). To evaluate the entailment of generated responses, we predict the
probability that information nugget is entailed or contradicted by a generated
response with Natural Language Inference (NLI) (MacCartney and Manning,
2008). Our implementation of NLI is based on a RoBERTa model4 trained on
the SNLI (Bowman et al., 2015) and MultiNLI5 datasets.

Faithfulness and Answer Relevance

To evaluate the factual correctness of the generated text we utilize the Retrieval
Augmented Generation Assessment (RAGAs) framework for reference-free eval-
uation of RAG pipelines (Es et al., 2024). The framework measures faithfulness
and answer relevance by prompting an LLM. Faithfulness is defined as the accu-
racy with which the generated content reflects the information in the retrieved
documents, ensuring the generation process avoids misinformation, while an-
swer relevance evaluates whether the response directly addresses the question,
not taking into account factuality, but penalizing incompleteness and redundant
information.

Completeness

Completeness measures the extent to which the information need is addressed
in the response provided by the system. It can be computed with respect to the
top retrieved passages, the whole corpus of documents, or external knowledge.
Response completeness can be achieved at the cost of reduced succinctness, espe-
cially for complex or exploratory queries. In our proposed method, completeness
can be controlled by manipulating the number of passages, the granularity of
facet clustering, and the number of facet clusters included in the response. We

4https://huggingface.co/cross-encoder/nli-roberta-base
5https://cims.nyu.edu/~sbowman/multinli/
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measure response completeness in terms of the number of ground-truth infor-
mation nuggets (provided as part of the CAsT-snippets dataset) entailed by the
response. Entailment is calculated using NLI based on the RoBERTa model
(same as for grounding evaluation).

AutoNuggetizer

We use the AutoNuggetizer framework proposed for RAG evaluation and vali-
dated during TREC RAG’24 (Pradeep et al., 2024). AutoNuggetizer comprises
two steps: nugget creation and nugget assignment. In nugget creation, nuggets
are formulated based on relevant documents and classified as either “vital” or
“okay” (Voorhees, 2004). The second step, nugget assignment, involves assessing
whether a system’s response contains specific nuggets from the answer key. The
score Vstrict for system’s response is defined as follows:

Vstrict =

∑
i ss

v
i

|nv|

where nv represents the subset of the vital nuggets; ssvi is 1 if the response
supports the i -th nugget and is 0 otherwise. The score of a system is the mean
of the scores across all queries.

We reimplemented the AutoNuggetizer evaluation framework to compute the
Vstrict measure, adhering to the original prompts from Pradeep et al. (2024).
To make the evaluation more robust and mitigate any potential bias of using
the same LLM for response generation and judging, we use the average of the
scores generated by three different LLMs (gpt-4o-2024-08-06, claude-3-5-
haiku-20241022, gemini-1.5-flash) as the final score (as opposed to the orig-
inal TREC RAG scores, which are based solely on GPT-4o). We validate our
implementation of the evaluation framework by comparing the results for our
submitted runs with the official numbers reported by track organizers (Pradeep
et al., 2024) (see column “TREC” vs column “avg LLM” in Table 6.7). Even
though our V_strict scores are higher than the scores reported in the TREC
RAG track, the relative ordering of the systems remains the same.

6.4.2 Human Evaluation
The generated responses are assessed by human evaluators along various dimen-
sions to evaluate the performance of the proposed method. We use reference-free
evaluation which instructs annotators to assess the response directly (Fabbri
et al., 2021) as, to the best of our knowledge, there is no dataset with ground-
truth responses in the CIS domain. To determine which response is better, we
use pairwise comparison instead of individual ordinal evaluations, focusing on
relative rather than absolute measures (Kelly, 2007). In the side-by-side evalu-
ation, users are asked to choose their preferred response and follow-up question
with respect to a given dimension, which is a common setup for collecting pref-
erence annotations in summarization (Goyal et al., 2023) and clarifying question
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evaluation (Sekulić et al., 2021). To ensure independence of the collected scores
we allow each crowd worker to complete only one task.

Response Dimensions

The main motivations for GINGER are (1) to ensure grounding of the response in
specific facts, including in it as many unique informative bits as possible given
the length limit, and (2) to generate useful follow-up questions. To measure the
effectiveness of our method in achieving that, we utilize the SWAN evaluation
framework (Sakai, 2023). We select five response dimensions to capture the
main functionalities of our proposed method for human assessment: coherence,
correctness, sufficiency, conciseness, and engagement.6 The focus of the human
evaluation is the general quality of the response and follow-up question with the
goal of capturing users’ preferences towards baseline or our proposed method.

To verify the effectiveness of our method in controlling the completeness of
the responses, we run an additional human evaluation task where we compare a
‘broad’ response briefly covering different facets of the topic but missing details
about different aspects with a ‘deep’ response that focuses on one aspect of the
answer and discusses it in details at a cost of diversity. The broad response is
generated by the standard GINGER setup and contains a one-sentence summary
for the top three clusters. The deep response is represented by a three-sentence-
long summary of the top cluster. The human evaluation task setup is the same
with two additional response dimensions added in the last questionnaire that
correspond to information breadth (The response covers diverse information)
and information depth (The response provides in-depth information). We use
the collected human scores to investigate the relation between the automatically
computed completeness score of the response and user-reported breadth and
depth of the provided information (Gienapp et al., 2024). Statements used
for information breadth and depth are validated in the pilot study where we
explored three different formulations for each dimension.7

Study Design

Human assessments are collected for responses generated with different configu-
rations of our method paired with a baseline response. Each response evaluation
task consists of a query, two variants of the response, corresponding attentive-
ness checks, and questions about response dimensions (see Figure 6.2). One
response is generated by the baseline method, while the second response is pro-
duced using GINGER. Each response is accompanied by the corresponding follow-

6We acknowledge that there are other evaluation criteria that are not taken into account in
our experiments (Sakai, 2023; Gienapp et al., 2024). We skip criteria that include verification
of the sources and we evaluate response grounding with automatic metrics. Similarly, we do
not ask crowd workers about dimensions related to the conversation and leave it for future
work. The operational definitions of these response dimensions are presented in the bottom
questionnaire in Figure 6.2.

7More details can be found in Appendix C.
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Which aspects/facets/points of view are discussed
in this response? (Select all that are discussed!)
           aspect 1
           aspect 2
           ...

Response 1
Follow-up question 1

 Which response more closely aligns with the given statement?
     The response makes sense as an answer to the query                                       1       2    
     The response is factually correct                                                                                1       2 
     The response satisfies the request expressed in the query                                1       2 
     The response is minimal in length                                                                             1       2 
     The response makes the user want to continue the conversation                  1       2 
     The response covers diverse information                                                                1       2 
     The response provides in-depth information                                                         1       2 

Query

Which aspects/facets/points of view are discussed
in this response? (Select all that are discussed!)
           aspect 1
           aspect 2
           ...

How relevant is the question asked at the end of
the response?
   Not relevant                                          Very relevant

How useful is the question asked at the end of the
response?
   Not useful                                                 Very useful 

How relevant is the question asked at the end of
the response?
   Not relevant                                         Very relevant

How useful is the question asked at the end of the
response?
   Not useful                                                Very useful 

Response 2
Follow-up question 2

 Which response do you prefer?                     1        2 

Figure 6.2: Design of the response evaluation user study. The last two questions
in the questionnaire separated with dotted line are used only in the completeness
evaluation.

up question. This setup allows for a relative comparison of different variants
of GINGER with the baseline method. Following each response, an attentiveness
check is presented to the crowd worker. This check involves a list of four aspects,
facets, or points of view generated by GPT-4, from which the worker must select
all that are discussed in the response. The model is prompted to create two lists
of aspects related to the topic of the provided passage. The first list contains
2-5 items covered in the passage, while the second list contains 2-5 items not
covered in the passage. The attentiveness check question includes four aspects
randomly sampled so that at least one aspect is discussed in the response. The
main part of the task contains questions about the user’s preferences towards
responses and the quality of the follow-up question. Each follow-up question is
evaluated in terms of relevance (Samarinas et al., 2022) and usefulness (Sekulić
et al., 2021; Wang, Zhenduo et al., 2023) on a 3-point Likert scale. Then, crowd
workers are asked to reveal their general preference towards responses not to
introduce any biases about the dimensions they should focus on (Goyal et al.,
2023). The last part of the task focuses on pair-wise evaluation of the responses
along the dimensions selected from the SWAN framework (Sakai, 2023).

Study Execution

Altogether, we create 44 tasks for human evaluation, each corresponding to a
query from the test partition of the CAsT-snippets dataset. Each task is com-
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Table 6.1: Automatic evaluation of responses that measures target ground-
ing (nugget entailment (Ent.) and contradiction (Cont.)) and completeness
(Comp.)). Statistically significant differences (p < 0.05) with respect to the
baseline are marked with ∗ (t-test). The best scores for each measure are bold-
faced.

Method
Automatic evaluation

Ent. ↑ Contr. ↓ Comp. ↑

Baseline 0.34 0.10 0.25

GINGER 0.61∗ 0.06 0.29

pleted by 5 crowd workers. Crowd workers with a greater than 97% approval
rate, over 10,000 approved tasks, and located in the US were qualified to partic-
ipate in the study. Workers were paid US $0.25 for successful task completion.8
Workers who failed to correctly classify 5 out of 8 aspects or more were rejected.
The acceptance rate was 70% (67 out of 220 HITs have been rejected due to
failed attentiveness checks).

6.5 Results on the TREC CAsT Datasets

We verify whether our modular response generation pipeline operating on infor-
mation nuggets (1) ensures grounding of the response in specific facts from the
retrieved sources, (2) generates relevant, answerable follow-up questions, and
(3) provides control over response completeness. This analysis is based on the
TREC CAsT collections, with additional results on TREC RAG discussed in
Section 6.6. Additional results are presented in Appendix C.

6.5.1 Grounding and Source Attribution
The results of the automatic and human evaluation are presented in Tables 6.1
and 6.2. Grounding is assessed by computing entailment and contradiction of
information nuggets detected in the source passages in the generated response
(cf. Section 6.5.1), with high nugget entailment and low nugget contradiction
scores being ideal. Completeness is measured as the fraction of ground-truth
information nuggets entailed by the final response. Given that automatic metrics
may not provide a reliable evaluation of LLM summaries (Goyal et al., 2023), we
also conduct a human evaluation to collect user preferences along the response
dimensions discussed in Section 6.4.1.

Does operating on information nuggets instead of passages in gener-
ating the response improve grounding and source attribution? We
observe significantly higher nugget entailment for responses generated with our

8The average time taken to complete a task was 1.7 minutes (8.82 USD hourly rate).
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Table 6.2: Human evaluation of responses that reports the fraction of votes
received when compared with the other method for (Coh)erence, (Con)ciseness,
(Eng)agingness, (Fac)tuality, (Suf)ficiency, response (Pref)erence, and average
scores for follow-up questions (on 3-point Likert scale) in terms of relevance
(FQ_rel) and usefulness (FQ_use). Statistically significant differences (p <
0.05) with respect to the baseline are marked with ∗ (Chi-square). The best
scores for each measure are boldfaced.

Method
Human evaluation

Coh Con Eng Fac Suf Pref FQ_rel FQ_use

Baseline 0.45 0.40 0.50 0.48 0.52 0.49 2.58 2.63

GINGER 0.55 0.60* 0.50 0.52 0.48 0.51 2.58 2.60

method compared to the baseline that generates the response from entire pas-
sages in a single step. This may be due to baseline responses focusing on different
information from the passages, not necessarily on the detected snippets. Nev-
ertheless, given the high performance of automatic nugget detection,9 we can
conclude that our method ensures a higher entailment of relevant information
in the generated response. In general, by operating on information nuggets,
GINGER grounds responses in specific facts and significantly improves source
attribution over the baseline.

Does nugget-based response generation method improve user-per-
ceived response quality? In human evaluation, we observe significant pref-
erence towards GINGER only in terms of response coherence and conciseness.
Human scores are comparable for the remaining response dimensions consid-
ered in the study. Crowd workers do not observe differences in the factuality
of the responses, even though our method significantly outperforms the base-
line in grounding and source attribution. This discrepancy may arise from the
fact that crowd workers evaluate only the response and follow-up question with-
out access to the sources (documents where the input passages originate from),
leaving them unable to verify source attribution. Higher scores for coherence
and conciseness may follow from highly structured and dense responses gener-
ated by GINGER, where each sentence discusses a specific aspect, compared to
baseline-generated responses that may be less organized and contain redundant
information. In general, human evaluation shows that the responses generated
by baseline and GINGER are comparable with a clear preference towards our
method in terms of coherence and conciseness.

9Evaluation of automatic nugget detection can be found in Appendix C.



CHAPTER 6. GROUNDED RESPONSE GENERATION 109

Table 6.3: Response completeness scores (measured by entailed ground-truth in-
formation nuggets) and human evaluation of response breadth and depth (frac-
tion of votes).

Method Completeness Resp. breadth Resp. depth

GINGER broad 0.31 0.58 0.57

GINGER deep 0.17∗ 0.42∗ 0.43∗

6.5.2 Follow-up Question Generation
Focusing on the human evaluation of follow-up questions, Table 6.2 presents
the results in its last two columns. We find that follow-up questions generated
by our method are on par with the facet-based approach used as our baseline
(cf. Section 6.3.2). This demonstrates that GINGER is capable of generating
useful follow-up questions based on facet clusters. Notably, those questions are
guaranteed to be answerable, which plays a crucial role in dialogue continuity
and reliability of the conversational system.

6.5.3 Controlling Completeness
To measure GINGER’s ability to control the completeness of generated responses,
we contrast two settings: broad and deep. The former uses the standard GINGER
setup with top 3 cluster summaries (facet threshold = 3), while the latter is a
3-sentence summary of the top cluster (facet threshold = 1) (see Section 6.4.1).
The results presented in Table 6.3 show that broad responses indeed achieve a
higher completeness score, indicating that more nuggets are entailed in the re-
sponse, while deep responses cover a lower number of ground-truth information
nuggets, demonstrating that the completeness of the responses can effectively
be controlled in GINGER.

We also perform a human evaluation to measure the perceived response
breadth and depth. Surprisingly, crowd workers rated broad responses as having
both greater diversity and more in-depth information. This unexpected result
might be attributed to facet clusters containing a limited number of nuggets,
which may hinder in-depth coverage of certain aspects of the topic. Further-
more, we observed no correlation between completeness and perceived breadth
and depth;10 this may be caused by the fact that crowd workers were not pro-
vided with the source material, potentially limiting their ability to fully evaluate
information diversity and detail.
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Table 6.4: Automatic evaluation of responses with varying quality of input. The
columns are the same as in Table 6.1. Additionally, faithfulness and response
relevance scores generated with the RAGAs framework are reported.

Input Method
Automatic evaluation

Entail. Contrad. Compl. Faithfulness Answer rel.

Relevant
Baseline 0.34 0.10 0.25 0.79 ± 0.24 0.94 ± 0.04

GINGER 0.61∗ 0.06 0.29 0.69 ± 0.30 0.87∗ ± 0.14

Retrieved
Baseline 0.38 0.12 0.17 0.71 ± 0.36 0.92 ± 0.15

GINGER 0.61∗ 0.07 0.13 0.71 ± 0.28 0.88 ± 0.06

Irrelevant
Baseline 0.19 0.17 0.07 0.48 ± 0.36 0.73 ± 0.38

GINGER 0.55∗ 0.04∗ 0.03 0.47 ± 0.29 0.75 ± 0.27

Table 6.5: Human evaluation of responses with varying quality of input. The
columns are the same as in Table 6.2.

Input Method
Human evaluation

Coh Con Eng Fac Suf Pref FQ_rel FQ_use

Relevant
Baseline 0.45 0.40 0.50 0.48 0.52 0.49 2.58 2.63

GINGER 0.55 0.60∗ 0.50 0.52 0.48 0.51 2.58 2.60

Retrieved
Baseline 0.69 0.53 0.64 0.64 0.62 0.65 2.55 2.61

GINGER 0.31∗ 0.47 0.36∗ 0.36∗ 0.38∗ 0.35∗ 2.47 2.48

Irrelevant
Baseline 0.75 0.52 0.74 0.76 0.73 0.71 2.53 2.53

GINGER 0.25* 0.48 0.26* 0.24* 0.27* 0.29* 2.03* 2.01*

6.5.4 Robustness
So far we have considered an idealized setting where GINGER was provided with a
set of relevant passages as input. To evaluate the robustness of our approach, we
now consider two additional settings: retrieved represents a real-world scenario
where a competitive passage ranker is employed, while irrelevant corresponds to
the situation when the answer is not found in the corpus (see Section 6.3.1). In
addition to nugget entailment and completeness scores, we report on faithfulness
and answer relevance computed using the RAGAs framework. Since RAGAs
scores are non-deterministic, we run the framework 5 times for each response
variant and report on the average along with the standard deviation of the runs.
Tables 6.4 and 6.5 present the results.

Intuitively, the quality of input passages and the amount of diverse infor-
mation included in them should have a direct impact on the quality of the

10Additional analysis of the correlation between human and corresponding automatic mea-
sures can be found in Appendix C.



CHAPTER 6. GROUNDED RESPONSE GENERATION 111

Table 6.6: Automatic evaluation responses for different variants of GINGER.
Statistically significant differences (t-test, p < 0.05) with respect to the standard
setup (top row) are marked with ∗.

Method Entail. Contrad. Compl. Faithfulness Answer rel.

GINGER 0.61 0.06 0.29 0.69 ± 0.30 0.87 ± 0.14

-fluency 0.70 0.07 0.28 0.72 ± 0.29 0.86 ± 0.14

-fluency w/ GTnuggets 0.51 0.06 0.48∗ 0.81∗ ± 0.24 0.86 ± 0.14

-fluency w/ BM25 0.70 0.06 0.30 0.72 ± 0.29 0.86 ± 0.11

-fluency w/ LSA 0.71 0.06 0.29 0.75 ± 0.26 0.88 ± 0.05

-fluency w/ BM25+LSA 0.74∗ 0.04 0.29 0.72 ± 0.27 0.87 ± 0.06

generated response. To some extent, we observe this tendency in RAGAs scores
for different inputs for both methods. Responses generated from irrelevant pas-
sages have significantly lower scores for both faithfulness and answer relevance.
This also aligns with previous research showing that using more relevant infor-
mation monotonically improves open-domain QA results for generation (Lewis
et al., 2020). However, grounding evaluation performed with RAGAs does not
confirm scores reported by entailment, with results showing no significant dif-
ferences between baseline and GINGER, and no clear preference towards any of
the two. This indicates that the evaluation using the RAGAs framework is not
sensitive enough and may not be applicable in our case, especially after the re-
cent critique of the automatic evaluation of generative models by means of other
models (Sakai, 2023; Faggioli et al., 2023; Gienapp et al., 2024; Rackauckas et al.,
2024).

Human evaluation shows a clear preference for the baseline for the retrieved
and irrelevant inputs, despite the low entailment and faithfulness scores ob-
served in automatic evaluation. This suggests that crowd workers prioritize the
fluency of the single-step LLM baseline approach over the factually more reli-
able but possibly less fluent responses by GINGER. Similarly, users’ preference
for baseline-generated follow-up questions is observed for responses based on
irrelevant and retrieved passages. This is expected, as irrelevant passages likely
contain a limited number of relevant information nuggets, resulting in fewer
facet clusters and insufficient data for our method to generate useful follow-
up questions. In contrast, the baseline extracts facets based on the topic and
uses autoregressive text generation, which may produce facets not mentioned in
the source passages. It may also result in follow-up questions that are not an-
swerable. We notice that human evaluation disagrees with automatic measures,
which is unsurprising, as humans struggle with identifying unreliable content in
fluent responses (Clark et al., 2021).10

6.5.5 Ablation Study
The pipeline architecture of GINGER allows for the evaluation of individual com-
ponents and their impact on the final responses. Specifically, we consider vari-
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Table 6.7: Response evaluation with AutoNuggetizer. TREC scores are pro-
vided for TREC RAG’24 AG submissions. The remaining scores are based on
our reimplementation of the framework.

Method
V_strict

TREC GPT4o Gemini Claude avg LLM

baseline-top5 0.247 0.332 0.468 0.525 0.442

baseline_CoT-top5 — 0.332 0.452 0.500 0.428

Webis 0.357 — — — —

TREMA 0.261 — — — —

GINGER-top20 wo/ rewriting 0.427 0.500 0.543 0.659 0.568

GINGER-top10 wo/ rewriting 0.369 0.423 0.502 0.582 0.502

GINGER-top5 wo/ rewriting 0.213 0.263 0.392 0.431 0.362

GINGER-top5 0.211 0.279 0.400 0.451 0.377

ants without the final response fluency improvement step (-fluency), experiment
with more traditional approaches for nugget clustering, based on latent seman-
tic analysis (LSA), and for cluster ranking, based on BM25. We also analyze
the impact of using ground-truth nuggets instead of automatic nugget detection
(GTnuggets). Following our standard setup from before, we provide the method
with 5 relevant passages as input. The results are presented in Table 6.6.

We find that entailment, completeness, faithfulness, and answer relevance are
not strongly impacted by the modification of specific components. The most
significant improvements are observed when ground-truth nuggets are used, sug-
gesting that the quality of nuggets plays a crucial role. We thus conclude that
the main contributing factor to GINGER’s performance is related to operating on
information nuggets, as opposed to the effectiveness of individual components.
This highlights the importance of ensuring higher granularity and reducing re-
dundancy of information used for response generation.

6.6 Results on the TREC RAG’24 Dataset

Given that GINGER essentially performs retrieval-augmented generation, we seek
to measure its capability to generate high-quality responses on the TREC RAG’24
benchmark. Table 6.7 presents results for the two baseline systems (RQ1b),
as well as for our nugget-based response generation pipeline (with or without
response fluency improvement) using different numbers of retrieved passages.
Responses from the top 5 passages are limited to 3 sentences, while those from
the top 10 or 20 passages have a 400-word limit. TREC scores, corresponding to
AutoNuggetizer scores provided by TREC organizers, are reported for system
configurations where we have official evaluation results.
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Table 6.8: Response evaluation with AutoNuggetizer on the TREC RAG’24
dataset of responses generated with different variants of GINGER without the
fluency enhancement step and with the top 20 passages provided as input.

Clustering Ranking V_strict (avg LLM)

BERTopic DuoT5 0.568

BERTopic BM25 0.554

LSA DuoT5 0.521

LSA BM25 0.551

Does GINGER improve response generation performance over the base-
lines? The best-performing variant of our system outperforms both baseline
approaches. Even prompting the model to divide the task into several steps
using Chain-of-Thought and providing a ground-truth response as an example
does not help in the response generation process. This implies that given the
complexity of the queries and the amount of input context to be taken into
account, the LLM needs further guidance to generate an accurate answer.

How does GINGER perform in comparison to other systems submit-
ted to TREC RAG’24? Based on the initial results provided by TREC
RAG organizers (Pradeep et al., 2024), our best system (GINGER-top20 wo/
rewriting) is among the top performing AG submissions. Even though several
other systems decompose response generation into a multi-step process, GINGER
shows higher performance. For reference, we include two other competitive AG
submissions in the results table: Webis (Webis.webis-ag-run0-taskrag) (Fröbe
et al., 2024) and TREMA (TREMAUNH.Enhanced_Iterative_Fact_Refinement-
_and_Prioritization) (Farzi and Dietz, 2024b).

How does the amount of input information affect GINGER’s perfor-
mance? By operating on information nuggets throughout the pipeline, GINGER
grounds responses in specific facts and effectively synthesizes information from
the provided passages. Responses generated from more passages are of higher
quality, indicating that the additional context is indeed utilized in the system
output (GINGER-top10 wo/ rewriting vs. GINGER-top20 wo/ rewriting).
This suggests that splitting response generation into several independent steps
and increasing the granularity of information mitigates the information loss to
which LLMs are prone. Even with potential information redundancy, responses
of the same length limit score higher with more input context, implying that
they include more vital facts.

How much do individual pipeline components contribute to overall
system performance? GINGER’s modular architecture allows us to evaluate
individual components and their impact on the final responses. We experi-
ment with traditional Latent Semantic Analysis (LSA) for nugget clustering
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and BM25 for cluster ranking, as alternatives. Following our best-performing
setup, we provide 20 relevant passages as input and limit responses to 400 words.
Table 6.8 presents the results of this ablation study. We find that modifying
specific components does not strongly impact response quality. Therefore, we
conclude that operating on information nuggets, rather than the effectiveness
of individual components, is the primary factor contributing to GINGER’s per-
formance. This highlights the importance of higher information granularity and
reduced redundancy in response generation.

Does LLM-based fluency enhancement reduce grounding? Since the
responses returned by our method are concatenations of independent facet clus-
ter summaries, the final response may lack fluency and coherence. However,
the difference between the responses generated with the fluency improvement
and without this step (GINGER-top5 vs GINGER-top5 wo/ rewriting) is not signif-
icant. This indicates that LLMs can be used to refine response fluency without
sacrificing quality or grounding.

6.7 Conclusions

To answer RQ3.2 (How to ensure the grounding of responses in the retrieved
sources?), we have introduced GINGER, an approach for the generation of grounded,
completeness-aware conversational responses. By utilizing information nuggets
from top retrieved passages, it employs a multi-stage process (clustering, rerank-
ing, summarization, fluency enhancement) to generate concise, information-rich
text, free of redundancy. Our approach offers several key advantages: maxi-
mizing information within response length limits, providing source attribution
for verifiability, guiding users with relevant follow-up questions, and allowing
control over response completeness. We have compared GINGER against base-
line response generation approaches using both automatic and human evalua-
tion. In answer to RQ1b (What are strong baselines for response generation
in CIS systems?), we have adopted a retrieval-augmented prompting strategy
using an off-the-shelf LLM without additional training, along with a Chain-
of-Thought baseline that includes a manually curated in-context example from
TREC CAsT’22. Automatic evaluation results show that GINGER outperforms
the baselines in terms of grounding and source entailment. Evaluation with
AutoNuggetizer framework shows that GINGER achieves top performance on the
Augmented Generation task at the TREC 2024 RAG track. The human eval-
uation shows a clear preference towards GINGER in terms of conciseness and
confirms that our method generates useful follow-up questions.

The grounded and completeness-aware responses generated by GINGER
provide a promising foundation for advancing transparent and explainable re-
sponses in CIS. Communicating the completeness of responses to users can aid
in navigating the search space more effectively. Additionally, highlighting the
information nuggets used in response generation within the sources can enhance
transparency by improving source attribution (see Chapter 7).



Chapter 7

Generating Transparent Responses

Knowing is not enough; we must apply.
Willing is not enough; we must do.

— Johann Wolfgang von Goethe

The increasing reliance on digital information has raised the demand for
search systems that are not only factual and reliable but also transparent. Hav-
ing established a method for synthesizing the requested information into a con-
versational response grounded in specific facts identified in the passages (see
Chapter 6), we turn our attention to the remaining open challenge of ensuring
response transparency. In transitioning from traditional search engine result
pages to conversational information-seeking systems that limit responses to a
few sentences, there is a significant concealment of underlying details such as
the ranking of results and specifics about the sources. These details are essential
for users to assess the scope, novelty, reliability, and topical relevance of the pro-
vided information (Xu and Chen, 2006). Recently proposed retrieval-augmented
generation (RAG) systems (Lewis et al., 2020) are claimed to produce more fac-
tually correct and diverse content. RAG, however, does not solve issues around
transparency, as it is not able to indicate low-confidence responses or identify
potential flaws related to limitations of the retrieved results or of the response
generation process itself. Since the user is provided only with a short textual
response as the final outcome of the generation process, it becomes the respon-
sibility of the conversational system to identify and communicate any potential
limitations to its users, ensuring transparency and empowering users to evaluate
response quality. While the importance of explainability is broadly recognized
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What was the US reaction to the Black Lives Matter movement?

Source              Controversial topic, multiple   
             points of view possible!

     Assistant’s confidence
     in the response

The U.S. reaction to the Black Lives Matter movement has been
mixed. On one hand, there has been support for the movement's
goals of addressing police brutality and racial injustice. However,
there has also been criticism and pushback, leading to initiatives
like the "Blue Lives Matter" movement which is a response to
perceived anti-police rhetoric associated with Black Lives Matter. 

Figure 7.1: Information-seeking dialogue with a CIS system with explanations
(sources, confidence, and limitations).

for AI (Monroe, 2018) and has been extensively studied, for example, for deci-
sion support and recommender systems (Nunes and Jannach, 2017; Zhang and
Chen, 2020), it has not received due attention for CIS systems.

In this chapter, we aim to fill this gap by investigating approaches to ex-
plaining conversational responses, as a means to increase the transparency of
the system addressing the following research question: How to generate re-
sponses transparent about the system’s confidence and limitations?
(RQ3.3). Our focus is on informational transparency, disclosing information
about the limitations or potential pitfalls in the response generation needed
to enable appropriate understanding and assessment, in contrast to functional
understanding of what the system can do, by exposing its capabilities and lim-
itations or mechanistic understanding focused on how the system works (Liao
and Vaughan, 2024). In particular, the focus of this study lies on the sources
used for generating the response, the system’s confidence in the provided in-
formation, and potential limitations or pitfalls of the response. In contrast to
prior research on reporting system confidence (Cau et al., 2023; Rechkemmer
and Yin, 2022) or identifying particular limitations (Zhong et al., 2020; Huang
et al., 2019b), our emphasis is on effectively communicating this information to
the user in a conversational setting; we thus assume the existence of components
that estimate system confidence and perform the detection of limitations.

Specifically, based on the previous research in related domains, we choose
to increase the transparency of a CIS system by explaining (1) the origin of
presented information, i.e., source (Tsai et al., 2021; Bohnet et al., 2023; Liu
et al., 2023a), (2) the system’s confidence (Cau et al., 2023; Radensky et al.,
2023), and (3) potential limitations of the generated response (Sakaeda and
Kawahara, 2022); see Figure 7.1 for an illustration of an enhanced conversational
response. Being transparent about these aspects of the response can enable
users to make informed judgments about the presented information and increase
their perceived usefulness of the response, bridging the gap between system-
generated responses and responses verifiable by the user. We investigate users’
perception of the system response quality together with the type and quality of
explanations. Specifically, we ask the following two questions.
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How does the quality of responses and explanations affect user-
perceived response usefulness? (RQ3.3a) Individuals without specific
training can only distinguish between human-generated and auto-generated
texts at a level close to random chance (Clark et al., 2021). Indeed, users
easily overlook factually incorrect, unsupported, biased, or incomplete infor-
mation. Therefore, we investigate the impact of the quality of the response
and explanations provided by the system on users’ assessment of the response.
Specifically, imperfect responses in our study include factual errors or lack of
viewpoint diversification, while noisy explanations introduce problems related to
sources (information subjectivity or lack of support for the response), confidence
(incorrect scores), or limitations (irrelevant information about pitfalls).

What are effective ways to provide explanations to users? (RQ3.3b)
There are multiple approaches to providing users with explanations. One op-
tion is to incorporate them as part of the natural language system utterance,
ensuring that users are explicitly informed about the confidence and potential
pitfalls of the response (Rechkemmer and Yin, 2022). As an alternative, we ex-
plore utilizing various user interface elements to effectively convey the response’s
limitations (Lu and Yin, 2021; Shani et al., 2013) or providing a granular scale
of the system’s confidence in generated response (Shani et al., 2013). Building
on findings from studies in recommender systems and automated decision mak-
ing (Nunes and Jannach, 2017; Zhang and Chen, 2020), we seek to adapt and
explore these concepts within the context of CIS systems.

To answer the above questions, we conduct a crowdsourcing-based user study
with 160 participants asking about their perception of responses and explana-
tions that vary in quality and presentation mode. Overall, our study seeks
to establish a more trustworthy interaction in CIS dialogues by bridging the
gap between system-generated responses and their usefulness to the users, by
providing explanations.

This chapter is accompanied by an online repository, containing the manually
generated CIS responses and explanations, as well as scripts for data analysis
at https://github.com/iai-group/sigir2024-transparentCIS.

This chapter is based on the following paper:

Łajewska et al. (2024b): Explainability for Transparent Conversational
Information-Seeking, SIGIR ’24
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7.1 Related Work

Effective user-system interactions, aligning user expectations, and building trust
in the systems that we attempt to achieve by communicating explanations about
the response to the user are the main axes of explainable AI (XAI). According
to human-AI interaction design guidelines, the system should communicate its
capabilities, reliability, and the rationale behind its decisions (Amershi et al.,
2019). XAI research in the context of decision-making emphasizes the role of
explanations in improving user comprehension (Cheng et al., 2019) and increas-
ing human trust in the system (Zhang et al., 2020c). Explanations can vary
in terms of presentation format (textual vs. visual) (Zhang et al., 2020c), the
level of interactivity (Cheng et al., 2019), complexity (Tsai et al., 2021), or rea-
soning styles (Cau et al., 2023). Explanations can also be used to reveal the
system’s confidence (Cau et al., 2023), system accuracy indicators (Kocielnik
et al., 2019), data sources (Tsai et al., 2021), answer attribution (Bohnet et al.,
2023; Liu et al., 2023a) and the correctness of system suggestions (Cau et al.,
2023) (see Section 2.3).

Despite advancements, CIS systems still face limitations such as unanswer-
ability (Sulem et al., 2022; Choi et al., 2018; Rajpurkar et al., 2018; Reddy et al.,
2019), biases or lack of viewpoint diversification (Gao and Shah, 2020; Draws
et al., 2021b; Sakaeda and Kawahara, 2022; Azzopardi, 2021) (see Section 2.2.4).
Even though research has been done in related fields, such as text classifi-
cation (Zhong et al., 2020; Kim and Allan, 2019), question answering (Liao
et al., 2022; Rajpurkar et al., 2018), or reading comprehension (Zhang et al.,
2021; Huang et al., 2019b) towards detecting these issues, communicating de-
tected problems to users is still a largely unexplored area in CIS. To ensure
the transparency of the system, the response should disclose system capabilities
and potential limitations, thereby managing user expectations (Radlinski and
Craswell, 2017; Azzopardi et al., 2018). Unlike previous studies that concen-
trated on detecting limitations, our work emphasizes the effective communica-
tion of potential flaws in the system’s output to the user. Such limitations can
be revealed using natural language utterances (Rechkemmer and Yin, 2022),
using analogy (He et al., 2023a), incorporating user interface elements (Lu and
Yin, 2021; Koch et al., 2023), or by providing a granular scale of the system’s
confidence (Shani et al., 2013) (see Section 2.3.1).

7.2 Methodology

We aim to investigate the user’s perception of the (1) system response qual-
ity, (2) type and quality of explanations, and (3) presentation of explanations.
We assume a CIS system that, given a query, performs the following steps:
(1) it retrieves passages and identifies the information nuggets in the top re-
trieved results containing key pieces of information answering a user query; (2)
it synthesizes the identified snippets (i.e., information nuggets) into a concise
and natural language response; (3) it returns the system’s confidence in the
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Visual (V)

Limitations + system confidence in NL

Limitations + system confidence visually

Sources

Textual (T)

Figure 7.2: Examples of responses with explanations for the query: What was
the US reaction to the Black Lives Matter movement? The response at the
top contains limitations and system confidence presented using Visual (V) ele-
ments. The variant presented at the bottom contains this information appended
at the end of the response in a Textual (T) form. The source is always pre-
sented in the same way.

provided response; and (4) based on the provided query, retrieved information
nuggets, and returned confidence, it identifies the potential pitfalls and limita-
tions that could have contributed to flaws in the response. We consider three
types of explanations the system may provide: (1) the underlying source, to
help users verify the response’s factual correctness and broader context; (2) the
system’s confidence in the provided response, to give users insights about how
certain the outcome of response generation is; and (3) potential limitations or
pitfalls to warn the user about flaws in the response or the source.

The study’s main goal is to investigate whether explanations provided by
the system can make the user’s response assessments easier or increase the in-
formation’s usefulness. We provide crowd workers with different configurations
of responses and explanations, varying in quality and presentation mode, and
ask them to indicate their perception of different system response dimensions.
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Inspired by work in the area of explainable decision-making systems (Cau et al.,
2023), we explore two different ways of presenting the explanations about the
response limitations and system confidence: textual and visual presentation;
see Figure 7.2.

7.2.1 Experimental Design
We have defined ten experimental conditions using different variants of the re-
sponse and explanations.1 Covering all combinations of factors (explanation
components × quality × presentation mode) exhaustively would be unfeasible.
Therefore, we select a subset of experimental conditions that best represent
what we are trying to measure in our study. The selected conditions vary
along three main dimensions: (1) response quality, (2) quality of the explana-
tions (i.e., source, system confidence, limitations), and (3) presentation style
(see Table 7.3). More details about experimental conditions and the different
explanation variants can be found in Section 7.3.1.

The ten experimental conditions resulted in ten different human intelligence
tasks (HITs). In each HIT, crowd workers are asked to assess responses for ten
queries. This is to ensure that the obtained results are to a large extent topic-
independent. To avoid repeated judgments that would reduce the reliability of
the study, we allow each crowd worker to complete only one HIT (Steen and
Markert, 2021), i.e., we employ a between-subject design (Kelly, 2007). In each
HIT, the order of query-response pairs is intentionally randomized. This is done
to prevent any adverse effects on the given query-response pairs that might occur
if they were consistently presented towards the end of the task, where worker
fatigue could potentially influence the results.

7.2.2 Crowdsourcing Task Design
Figure 7.3 summarizes the design of the crowdsourcing tasks. Each HIT con-
tains ten query-response pairs and is comprised of: I) HIT instructions providing
task background; II) a questionnaire about the worker’s familiarity with con-
versational assistants (see Table 7.1); III) a description of the system; IV) ten
CIS interactions; V) a post-task questionnaire; and VI) a demographics ques-
tionnaire. Workers are not given specific examples of query-response pairs in
the instructions to avoid bias. Part III contains a pre-use explanation of the
system (Chiang and Yin, 2022). It aims at improving the following compe-
tencies of the users: (1) understanding the capabilities of the system, and (2)
understanding that the response is limited to 3 sentences only. We decompose
part IV of the user study into ten subsections using independent CIS interac-
tions to facilitate atomic microtask crowdsourcing (Gadiraju et al., 2015). Each

1We acknowledge that the variants for each transparency dimension are not exhaustive.
Various UI elements can be used to present information, and different ways to introduce noise
can be explored. However, since response-related explanations have not been explored in
conversational search, we limit the first study in this area to solutions previously proposed for
similar systems.
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CIS interaction 1

HIT instructions

CIS interaction 2
....

CIS interaction 10
....

....

I)

IV)

a) Query

HIT

Familiarity with Conversational AssistantII)

System DescriptionIII)

Post-task questionnaireV)

Demographic informationVI)

b) Topic familiarity

c) Response (with explanations)

d) Attentiveness Check

e) Response assessment

Figure 7.3: High-level design of the user study.

CIS interaction contains (a) a query; (b) a topic familiarity questionnaire; (c)
a system response possibly enhanced with explanations; (d) a corresponding
attentiveness check; and (e) a CIS response assessment. CIS interactions are
followed by a post-task questionnaire (Part V) investigating workers’ experience
of interacting with the assistant in general, not concerning specific responses.
The questionnaire contains indirect questions about all three types of explana-
tions enhancing the system response (see Table 7.1). The HIT finishes with
a short demographics questionnaire (Part VI) asking workers’ age, education
level, and gender.

a) Query and b) Topic Familiarity The query is followed by a short ques-
tionnaire asking about interest, familiarity, and likelihood of posing a similar
query (Bolotova et al., 2020) (see Table 7.1). In this user study, the worker’s
background knowledge and familiarity with the topic are dependent variables
that we cannot control. Asking users to assess their familiarity with the topic
enables us to condition the collected data on users’ background knowledge (Kr-
ishna et al., 2021).

c) Response The system response synthesizes the information nuggets identi-
fied in the top retrieved results. The response can be enhanced with explanations
that can be presented in different formats.

d) Attentiveness Check We present workers with an attentiveness check
for each query-response pair, to detect poorly performing workers, cheat sub-
missions, or bots (Gadiraju et al., 2015). Each attention check consists of three
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Table 7.1: Questions used for collecting data about the user experience of us-
ing conversational agents, their involvement in the topic, and their rating for
explanations.

Variable Question used in the user study

Conversational Agent Familiarity How often do you use conversational assistants like Siri,
Alexa, or Google Assistant?

Search with Agent Frequency How often do you use conversational assistants to search
for information?

Topic Familiarity What is your level of familiarity with the topic of the ques-
tion?

Interest in Topic What is your level of interest in the question?

Similar Search Probability What is the likelihood that you would search for this infor-
mation?

Source Explanation To what extent were the provided responses supported?

Limitation Explanation To what extent did the assistant help you realize the po-
tential limitations of the responses?

Confidence Explanation To what extent are you aware of the assistant’s confidence
in the provided responses?

sentences related to the topic of the query, one of them being a summary of
the provided response. Sentences are provided in a random order and workers
are asked to select the best summary (Bolotova-Baranova et al., 2023). This
simple quality check enables us to filter out responses from workers who are not
performing the task attentively or reading the responses carefully. Submissions
that failed on more than 3 out of 10 attentiveness questions were rejected.

e) Response Assessment In this part of the CIS interaction, workers are
asked to evaluate different dimensions of the response variant presented for a
given query. The question about each response dimension is answered on a four-
point Likert scale. Explicitly asking users to report on its value is not helpful
because they may have a different understanding of this concept (Kelly, 2007).
Therefore, in our setup, user satisfaction is indirectly observable. To increase
the ecological validity of our experiments, the questions do not use explicitly
the names of the dimensions. Instead, we ask about each response dimension
using an operational definition (see Table 7.2). This approach ensures a common
understanding of the dimensions by all study participants. Both the response
dimensions and the operational definitions are inspired by Cambazoglu et al.
(2021)’s work investigating answer utility for non-factoid question answering.
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Table 7.2: Operational definitions used in the response assessment questionnaire
for all response dimensions. They followed a statement: The provided assistant’s
response . . . and were answered by crowd workers on a four-point Likert scale.

Response Dimension Operational definition used in the user study

Usefulness . . . was useful for completing my task

Relevance . . . is about the subject of the question

Correctness . . . contains an accurate response to the question

Completeness . . . covers every aspect of the question

Comprehensiveness . . . contains detailed information

Conciseness . . . does not contain redundant information

Serendipity . . . contains some unexpected but positively surprising information

Coherence . . . does not contain inconsistent statement

Factuality . . . is based on things that are known to be true

Fairness . . . is free of any kind of bias

Readability . . . is fluently written

Satisfaction . . . is satisfying in terms of completing my information need

7.3 User Study Execution

We used the Amazon Mechanical Turk (MTurk) crowdsourcing platform to col-
lect responses from online workers.2 Data collection was run between 20 De-
cember 2023 and 9 January 2024, divided into two stages: a pilot (Section 7.3.2)
and a main study (Section 7.3.3).

7.3.1 Data
A critical element of the study is selecting query-response pairs and explanations
enhancing the responses that enable us to answer our research questions. We
use ten queries selected from the TREC CAsT’20 (Dalton et al., 2020) and
’22 (Owoicho et al., 2022) datasets and two manually created responses for
each query. Different variants of the responses (perfect and imperfect) and
explanations (accurate and noisy) are created manually by the author of this
thesis. The noise in responses and explanations is introduced manually using
framing, i.e., distorting the information presented to the users (Kocielnik et al.,
2019). For each source, the specific information nuggets that contributed to the
answer are highlighted, inspired by the CAsT-snippets dataset (see Section 5.4
for more details about the dataset).

Queries and Responses The query selection process takes into account the
potential challenges of the query and the familiarity of crowd workers with the
topic. We select a subset of 20 queries from the TREC CAsT datasets that are

2Our institution does not require ethics approval for this kind of study.
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challenging in one of two aspects: (1) limited coverage of the topic in the corpus
or lack of a full answer, resulting in factual errors; or (2) topic complexity or
controversy resulting in an incomplete or biased response. By selecting these
challenging queries we attempt to simulate scenarios where enhancing the sys-
tem response with explanation can be beneficial for users. Additionally, queries
selected in the first step are sorted according to the familiarity scores reported by
crowd workers in a small crowdsourcing study that was set up to select the top
ten queries that are deemed most well-known to users. This approach aims to
ensure that users possess sufficient background to meaningfully assess responses
and associated explanations. We consider two variants of the response for each
query: perfect and imperfect. The perfect response, i.e., ground truth answer, is
generated manually using the top retrieved results by the author of this thesis.
The imperfect response is a manual modification of the ground truth answer
to contain factual errors, be biased towards one point of view, or cover only
one aspect of a complex problem. This way, we attempt to take into account
significantly different versions of the responses in terms of their accuracy and
quality.

Explanations We provide explanations related to (1) source, (2) system con-
fidence, and (3) limitations, which are instantiated in two variants: accurate
and noisy.

(1) Sources The “Source” component is an expandable element within the
response, encompassing the complete text of the paragraph used for generating
the response. It includes annotations of information nuggets, highlighting cru-
cial pieces of information within the passage. Additionally, workers receive a
link to the entire webpage from which the passage originates (Liu et al., 2023a).
This allows them to access the full text of the document, aiding in the assess-
ment of its relevance, which is particularly beneficial for long, non-navigational
queries (Kazai et al., 2022). The URLs are anchored to the specific section of
the webpage where the passage is located. Additionally, based on the URL,
workers can assess the credibility or authority of the source. The noisy source
pertains to the query’s topic but lacks information that supports the provided
response (Liu et al., 2023a). It corresponds to the initial passage from the
Wikipedia page related to the general query topic, allowing for an assessment
of users’ diligence in verifying the provided explanations.

(2) System Confidence Within conversational response generation, confi-
dence can be assessed along several different dimensions:

• The confidence that the identified snippets contain the full, complete answer
to the question, not only part of it.

• Given that the response is limited to only 3 sentences, the confidence that
the top-k snippets used in the response provide sufficient coverage of the
retrieved information.
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• The confidence that the response generated with LLM using the selected
snippets is accurate; this accuracy is tied to the model’s fluency in the topic,
assessing how adept the model is in crafting content on a given subject,
which can be influenced by the volume of data during LLM training or topic
popularity.

System confidence is either communicated in textual form (“the system confi-
dence in the provided response is ...%” appended at the end of the response) (Cau
et al., 2023) or through an additional UI element. Given that users best under-
stand confidence displays inspired by well-known displays in other areas (Shani
et al., 2013), we decided to use a bar chart presentation that is often associated
with cell phone connectivity. Adding noise to this component results in system
confidence being reverted, i.e., although the provided response is correct, low
system confidence is reported. We consider the confidence of 1–2 out of 5 for
imperfect responses and 4–5 for perfect responses. We skip confidence of 3 as
it is ambiguous and we skip confidence of 0 as it represents the situation when
the system should not show any response, but state that an answer could not
be found.3

(3) Response Limitations We have identified several key areas of potential
challenges and problems that could impact the usefulness of provided responses.
These issues, while not exhaustive, serve as a starting point for consideration
in our user study. Among the challenges related to the topic, we recognize the
potential issues related to controversy, leading to a lack of viewpoint diversi-
fication, and complexity, resulting in response incompleteness. Source-related
challenges include the subjectivity of the source text used, possibly outdated
source information, sources influenced by commercial interest, promoting spe-
cific products, or brands, and reliance on unverified or not reputable sources.
Query-related issues encompass biases or ambiguities in queries, time-sensitive
queries requiring current information, queries lacking sufficient context, privacy-
sensitive queries involving private or confidential information, and speculative
queries seeking insights into future events. Additionally, search and system is-
sues may arise, such as rare topics insufficiently covered in the corpus, lack
of credible sources supporting the response, or retrieved passages containing
contradictory information.

The query-response pairs selected for this study contain factual errors, are
incomplete, or rely on subjective sources. Additionally, challenges related to the
topic, source, or query, not identified in the subset of query-passage pairs used in
this study, are also considered to explore whether users can more easily identify
these issues based on the presence and correctness of explanations provided by
the system. Issues purely related to search or system failures, where the system
is aware of its inability to find sources that answer the question, fall outside

3Users’ reactions to such extreme confidence scores are not a subject of this study but could
be explored in future work once it has been established that users find confidence explanations
useful.
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Table 7.3: Experimental conditions considered in the user study; components
may be included without noise (+); with some inaccuracies (~); or not provided
in the system’s output (–). (T) indicates textual and (V) visual presentation
mode.

EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8 EC9 EC10

Response +, T +, T ~, T ~, T +, T +, T ~, T ~, T +, T ~, T

Source +, T +, T +, T +, T ~, T ~, T ~, T ~, T – –

Confidence +, V +, T +, V +, T ~, V ~, T ~, V ~, T – –

Limitations +, V +, T +, V +, T ~, V ~, T ~, V ~, T – –

the scope of this study. In such cases, the system should inform the user about
no answer found without trying to produce a response. Response limitations
are communicated either in a textual form by appending running text at the
end of the system response (Rechkemmer and Yin, 2022; Costa et al., 2018)
or using an additional UI element resembling a warning message (inspired by
fact-checking warning labels (Koch et al., 2023)). Adding noise to limitation
explanation results in communicating irrelevant limitations, i.e., if the topic is
controversial, the system informs the user about query ambiguity or possibly
outdated source information. We aim for the noisy limitations to be easily
distinguishable after reading the query and the response carefully. The goal of
this study is to investigate the limitation explanations rather than the detection
of specific limitations, therefore the noise in the limitations is aimed to be easy
to spot.

Experimental Conditions (EC) The subset of experimental conditions se-
lected for this user study is summarized in Table 7.3. The conditions vary along
three main dimensions: (1) response quality, (2) explanation quality, and (3)
presentation of explanation. EC1 and EC2 represent a perfect system response
with accurate explanations. More specifically, the explanations cover the source
supporting the response, as well as the system’s confidence score; the limitation
explanation is not included because the response has no inaccuracies in this case.
EC3 and EC4 correspond to imperfect responses that may contain some factual
errors or be biased towards one specific point of view but are accompanied by
accurate explanations related to source, confidence, and limitations. EC5 and
EC6 represent the perfect response accompanied by noisy explanations. EC7
and EC8 correspond to imperfect responses that contain flaws and noisy expla-
nations. The last group of conditions, EC9 and EC10, represents the response
(either perfect or imperfect) without explanations.
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7.3.2 Pilot Study
We ran a pilot study (MTurk; N=15; 3 HITs; US$3 per HIT, proportional to
US minimum wage), where HITs corresponded to three experimental conditions
selected from the 10 described in Table 7.3: EC3, EC4, and EC7. The selected
conditions encompass border cases, featuring variations in both the presentation
mode of explanations (EC3 vs. EC4) and the quality explanations (EC3 vs.
EC7), and deliberately involve imperfect responses to simulate the most natural
scenarios. In their overall feedback, crowd workers primarily expressed concerns
about the length of the task and the payment which was accordingly increased
in the large-scale data collection.

We performed a power analysis by employing one-way ANOVA with the
experimental condition as an independent variable and user-reported response
usefulness as a dependent variable (Sakai, 2018). The results indicate that 16
workers are required to observe a statistically significant effect of explanation
quality on the perceived usefulness of system responses, whereas 56 workers
are required for a statistically significant effect of the explanation presentation
mode. Considering four additional pairs of experimental conditions with varying
presentation modes, we expect that gathering data from 14 unique workers
per HIT (56 from power analysis divided by 4 pairs of conditions) is adequate
to observe a statistically significant effect of presentation mode across all ten
experimental conditions. Based on this analysis, we decided to recruit 16 unique
workers per HIT in our main study.

7.3.3 Main Study
Crowd workers with a greater than 97% approval rate, over 5,000 approved
HITs, and located in the US were qualified to participate in the study. Workers
were paid US$4 for successful HIT completion. Workers who failed 4 out of
10 attentiveness checks or more were rejected. Altogether we collected 273
submissions, out of which 113 were discarded due to failed attentiveness checks.
Accepted tasks were submitted by 160 unique workers (16 per HIT), with the
following user-reported demographics: 95 male, 60 female, 5 in “other” category
(none in “prefer not to say”); age breakdown: 18–30 (39), 31–45 (76), 46–60 (41),
60+ (4); highest degree: Ph.D. or higher (3), master’s (34), bachelor’s (111),
high school (12).

7.4 Results

To answer our research questions, we first analyze the sensitivity of our ex-
periment. Tables 7.4, 7.5 and 7.6 show the results of the one- and two-way
ANOVA tests for statistical significance on user-reported dimensions, using a
significance level of α = 0.05. Whenever applicable, the effect size of a given
factor is classified based on the formula for the unbiased estimator and scales
used by Culpepper et al. (2022). Given the large number of factors defining
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Table 7.5: Results of one-way ANOVA for explanations. Self-reported dimen-
sions (dependent variables) are in columns, and independent variables are in
rows. Boldface indicates statistically significant effects (p < 0.05). Effect size:
L=Large, M=Medium, S=Small.

Explanation

Source Confidence Limititations

All conditions (EC1–EC10)

Response Quality 0.697 (–) 0.456 (S) 0.445 (S)

Explanation Quality 0.0 (S) 0.0 (S) 0.173 (S)

Presentation Mode 0.0 (S) 0.0 (S) 0.0 (S)

Query 1.0 (–) 1.0 (–) 1.0 (–)

Topic Familiarity 0.0 (M) 0.0 (S) 0.0 (S)

Interest In Topic 0.0 (M) 0.0 (S) 0.0 (S)

Similar Search Prob. 0.0 (M) 0.0 (S) 0.0 (S)

Conv. Agent Familiarity 0.0 (S) 0.0 (S) 0.0 (S)

Search with Agent Freq. 0.0 (M) 0.0 (S) 0.0 (M)

Only conditions with explanations (EC1–EC8)

Explanation Quality 0.097 (S) 0.0 (S) 0.088 (S)

Presentation Mode 0.0 (S) 0.653 (–) 0.0 (S)

each experimental condition, we treat response quality, quality of explanations,
and their presentation mode as three separate independent variables to simplify
the interpretation of the results. Each user-reported response dimension score
and user rating for explanation is treated as a dependent variable. The anal-
ysis performed to answer RQ3.3a (Section 7.4.2) and RQ3.3b (Section 7.4.3)
is based only on the results with the statistically significant effects discussed
in Section 7.4.1.

7.4.1 User’s Perception of Response and Explanations
Response Quality. Table 7.4 shows that response quality has a statistically
significant effect only on user-reported correctness of the response. Complete-
ness, factuality, and fairness are not influenced by the quality of the response,
even though some responses contained manually injected errors related to these
dimensions (e.g., bias towards one specific point of view, factual errors, or cov-
ering only one aspect of the topic). This insensitivity of user-reported response
dimensions to the quality of provided information may suggest that users are
not able to identify some of the problems with the response without expert
knowledge about the topic.
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Table 7.6: Results of two-way ANOVA. The boldface indicates statistically sig-
nificant effects (p < 0.05). Effect size: S=Small.

Usefulness Satisfaction
Explanation

Source Confidence Limitations

Interactions with Query

Response Quality 0.069 (S) 0.296 (S) 1.0 (–) 1.0 (–) 1.0 (–)

Explanation Quality 0.767 (–) 0.993 (–) 1.0 (–) 1.0 (–) 1.0 (–)

Presentation Mode 0.94 (–) 0.981 (–) 1.0 (–) 1.0 (–) 1.0 (–)

Conv. Agent Fam. 0.995 (–) 0.887 (–) 1.0 (–) 1.0 (–) 1.0 (–)

Search w/ Agent Freq. 0.632 (–) 0.215 (S) 1.0 (–) 1.0 (–) 1.0 (–)

Topic Familiarity 0.697 (–) 0.489 (S) 0.002 (S) 0.71 (–) 0.001 (S)

Interest in Topic 0.087 (S) 0.542 (–) 0.063 (S) 0.698 (–) 0.234 (S)

Similar Search Prob. 0.014 (S) 0.019 (S) 0.449 (S) 0.922 (–) 0.082 (S)

Interactions with Topic Familiarity

Response Quality 0.848 (–) 0.42 (S) 0.24 (S) 0.005 (S) 0.0 (S)

Explanation Quality 0.155 (S) 0.671 (–) 0.0 (S) 0.0 (S) 0.0 (S)

Presentation Mode 0.663 (–) 0.752 (–) 0.0 (S) 0.0 (S) 0.0 (S)

Explanations. Our experiments include two experimental conditions where
explanations are not provided (i.e., EC9–EC10). To understand the impact
of quality and presentation mode of explanations, we conducted an additional
analysis on the data from HITs representing only EC1–EC8 (reported in the bot-
tom part of Table 7.4) and we focused our analysis on these results. In terms
of explanation quality, we observe that introducing noise in explanations has a
statistically significant effect on almost all user-reported response dimensions,
suggesting that noisy explanations have a strong impact on user experience in
general. However, the quality of explanations does not impact user assessment
of correctness and factuality, dimensions related to factual errors in the response.
It means that users seem to assess the factual correctness of the response inde-
pendently of the quality of the explanations provided by the system. In terms of
presentation mode, we observe a statistically significant effect only for the pres-
ence/absence of explanations on the usefulness of the response—a statistically
significant effect is observed in the top part but not in the bottom part of the
table. Similarly, the user-reported conciseness, fairness, and relevance of the re-
sponse are impacted only by the presence/absence of explanations. This implies
insensitivity of the response dimensions to the way explanations are presented.

User Ratings for Source, Confidence, and Limitations. The impact of
noise in the source is solely tied to the presence or absence of the source—no
statistically significant effect is observed for EC1–EC8 (see Table 7.5). However,
the presentation mode of the source affects user ratings for the explanations
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independently of its presence or absence (statistical significance persists when
excluding EC9 and EC10), even though the source is presented in the same
format in both presentation modes. This may be due to the wording of the
question about source explanation in the questionnaire—it does not explicitly
mention sources, and therefore is open to other interpretations, especially when
sources are not provided. In the case of noise in confidence explanation, it
significantly affects user ratings. However, concerning presentation mode, we
can only discern the effect of its presence or absence, not the specific mode of
presentation. Regarding limitations, there is no statistically significant effect of
noise in the corresponding explanation, but there is of presentation mode. User
ratings for explanations related to limitations are influenced by the presentation
mode, not the mere presence of this explanation. This implies that, in general,
the impact of noise on explanations is only related to the confidence and the
impact of the presentation mode only to the limitations. The effect of quality
and presentation mode on other explanations—based on the user ratings—was
not significant in this user study.

Query. We do not observe any statistically significant effects of the query on
the user-reported response dimensions (see Table 7.5). This suggests that the
results are topic-independent and generalizable. The proposed user study design
mitigates the impact of the query on the results. Additionally, the interaction
between response quality, quality of explanations, or presentation mode and the
query does not have a statistically significant effect on user-reported scores for
response satisfaction, usefulness, and explanations (see Table 7.6).

Topic Familiarity. Workers report that they are rather familiar with the
query topics, which indicates that the process of query selection was successful.
Following our hypothesis, users’ background knowledge about the topic affects
how they assess the response. It is visible in the effects reported for almost
all response dimensions (see Table 7.4). Similar effects are observed for the
user’s interest in the topic and the likelihood of the user searching for a similar
query. Additionally, we observe a statistically significant effect of all these three
indicators of user involvement in the topic on the user ratings for explanations
(see Table 7.5). It implies that these factors that we cannot control and are
completely user-dependent directly impact the assessment of the responses we
examined in this user study.

In terms of the results of two-way ANOVA (see Table 7.6), we observe a sta-
tistically significant effect of the interaction between the user’s familiarity with
the topic and the response quality on the user ratings for explanations related to
limitation and the system’s confidence. It confirms the intuitive relationship be-
tween the user’s background knowledge and the quality of the response on their
ability to correctly assess the explanations provided by the system and deem it
useful or not. We do not observe a statistically significant effect of interaction
between response quality and familiarity with the topic on the usefulness of the
response or user satisfaction in general. The interaction between the noise in
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the explanations and the familiarity with the topic has a statistically significant
effect on the user ratings for all three explanations. It can follow from the fact
that a user unfamiliar with the topic needs high-quality explanations from the
system to be able to verify and use the provided response. The user ratings
for explanations are influenced by the interaction between the way explanations
are presented and the user’s familiarity with the topic. This suggests that de-
pending on the user’s background knowledge, the preferred way of receiving
explanations from the system may differ.

Familiarity with Conversational Agents. We observe a statistically sig-
nificant effect of the user-reported frequency of interacting with conversational
assistants (in general and for search specifically) on some of the user-reported
response dimensions (see Table 7.4). Interestingly, we observe a medium-size
effect of the frequency of using the conversational search on the user ratings
for explanations related to source and limitations (see Table 7.5). Addition-
ally, we observe that higher values for familiarity with conversational agents are
associated with explanations without noise and visual presentation mode. It
indicates that the user’s familiarity with the system impacts their assessment
of its additional components.

7.4.2 Effect of the Explanation Quality (RQ3.3a)
Effect on the User-reported Response Dimensions The top-left plot
in Figure 7.4 shows that user-reported values for the usefulness of the responses
are concentrated around higher values (3 and 4). However, noise in the explana-
tions results in slightly lower usefulness scores. It indicates that the high-quality
source, system confidence score, and information about the response limitations
make the response more useful from the user’s perspective. Minor differences in
usefulness scores between perfect and imperfect responses (second and third set
of bars in the plot) suggest that when explanations are not provided (“None”
variant), users are less likely to object to the usefulness of imperfect responses.
In general, the explanations are meant to increase the reliability and trans-
parency of the system. However, they require additional time and effort from
the user and the cost of “processing” explanations may be higher than the actual
gain. This situation is visible in the second and third set of bars in the top-left
plot in Figure 7.4 where the highest usefulness is reported for the responses that
do not contain any explanations (“None” variant), independent of their quality.
It suggests that the explanations either pollute the response or make the user
more critical of it, resulting in reduced usefulness.

Effect on user ratings of explanations Looking at the means of user rat-
ings for source and confidence explanations (top-right plot in Figure 7.4), ratings
are again skewed towards higher values, and scores for accurate explanations
are slightly higher than for noisy explanations, especially for confidence. This
suggests that users perceive noisy explanations as less useful in understand-
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Figure 7.4: Mean scores for response usefulness and explanation ratings for
different quality of the explanations (top) and presentation mode (bottom). All
differences between the ratings within a given plot are statistically significant.

ing system confidence and attributed sources—we do not observe statistically
significant differences for the explanations related to limitations.

7.4.3 Effect of the Presentation Mode (RQ3.3b)
Effect on the user-reported response dimensions On average, we do not
observe differences in the usefulness scores between textual and visual modes,
but usefulness scores are significantly higher when no explanations are provided
(bottom-left plot in Figure 7.4). This is aligned with the one-way ANOVA
results and suggests that the main issue is not the question of presentation mode
but rather whether the explanations are necessary, hinting at the underlying
trade-off between effort and gain. Nevertheless, we observe some differences
in the user ratings for explanations when looking at responses accompanied by
explanations with different quality. Namely, visual explanations result in higher
usefulness scores for responses with accurate explanations, while in the case of
noisy explanations workers find the textual format more useful.

Effect on user ratings of explanations Looking at the means of user rat-
ings for explanations with respect to different presentation modes (bottom-right
plot in Figure 7.4), the preferred presentation mode depends on the explained
aspect of the response. (Note that user ratings for explanations related to the
source are not informative in this case, as the source is always presented in the
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same way.) Namely, we observe slightly higher ratings for the textual presenta-
tion of limitations. In the case of confidence, the difference between presentation
modes is very small with a slight preference towards visual presentation, which
aligns with the results of one-way ANOVA. This suggests that further research
is needed to better understand how to optimally integrate different aspects in
the layout of transparent CIS responses.

7.4.4 Qualitative Analysis
We manually investigate the feedback given by crowd workers regarding their
ratings for the source, confidence, and limitations explanations, seeking insights
and suggestions to enhance their content and presentation (see Table 7.7). Many
workers (18/160) pointed out that explanations related to limitations and con-
fidence significantly enhanced their understanding of the constraints of both
the system and the responses. The mention of encouragement towards infor-
mation verification and critical thinking was consistent across various qualities
(comments from EC1–EC8 HITs), and positive comments were also shared for
noisy explanations (EC5–EC8). It suggests that workers may face challenges
in identifying inaccuracies in the explanations. For instance, even though the
provided sources did not align with the information in the response, none of
the users mentioned these mismatches in their comments. Nevertheless, sev-
eral crowd workers (4/160) emphasized the potential insufficiency of responses
restricted to three sentences and a single source in certain situations. A few
(3/160) crowd workers expressed uncertainty in interpreting explanations re-
lated to limitations and confidence scores, underscoring the need for additional
explanations or tutorials describing the system interface before usage. For in-
stance, some workers attempted to interpret the meaning of the confidence score
on their own describing it as a “transparency measure to indicate the system’s
level of certainty regarding the accuracy or relevance of the information shared”
or a “model’s estimate of the accuracy and reliability of its responses.” In terms
of the presentation mode, one worker suggested that representing confidence
score using percentages would be more precise and helpful than a “wifi connec-
tion symbol.” This suggests that users might prefer a different display element,
e.g., a fuel gauge (Shani et al., 2013), and perhaps also a finer confidence scale
(which would require a more precise estimation of confidence). In HITs with no
explanations (EC9 and EC10), workers highlighted their lack of awareness re-
garding response limitations and confidence. Some workers attempted to gauge
system confidence by searching for implicit confidence signals like “I think” or “I
believe” in the responses (Radensky et al., 2023). Overall, workers consistently
emphasized that explanations enhance their understanding and encourage in-
formation verification and critical thinking. However, the comments reflect that
workers are unlikely to identify flaws in the provided explanations.
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Table 7.7: Selected comments provided by crowd workers as an explanation of
their scores for additional information revealment.

Exp.
Cond.

User’s Feedback Main Point

EC1

They all had a citation, but only one, and sometimes more perspectives
were called for.

Limited sources

I noticed the bars, but I wasn’t sure how the assistant was coming up
with its confidence level.

No confidence
explanation

EC2

The responses were supported by relevant and accurate information,
addressing the questions adequately.

Relevant
sources

I understand it provided what it believed to be it’s confidence in the
answer, but knowing what that number is based on would be helpful.

No confidence
explanation

EC3

. . . a more explicit discussion of potential limitations or diverse perspec-
tives could have been beneficial for a fuller understanding.

No limitations
explanation

This transparency in indicating confidence levels allows users to gauge
the system’s certainty in the provided responses.

Transparency

EC4
The assistant is less certain about the accuracy of the information pro-
vided. This awareness is crucial for interpreting and verifying the in-
formation obtained from the assistant.

Critical evalua-
tion

EC5

. . . This acknowledgment highlighted the assistant’s awareness of certain
boundaries, privacy concerns, or potential ethical considerations related
to specific topics. This helped me understand the constraints within
which the assistant operates and the areas where it might not provide
detailed information due to the nature of the query

Understanding
system con-
straints

The assistant consistently indicated its confidence level in each response.
This feature provided transparency about the reliability of the infor-
mation and the extent to which the assistant could guarantee accu-
racy. The confidence indicators were helpful in understanding the con-
text and reliability of the provided information, allowing me to assess
the responses with an awareness of the assistant’s level of certainty.
This transparency contributed to a more informed evaluation of the re-
sponses.

Transparency

EC6

The assistant explicitly acknowledged potential limitations in several
responses, mentioning factors such as bias in the questions. This helped
me understand the potential constraints and caveats associated with the
information provided.

Understanding
response con-
straints

EC7

I appreciated the symbol showing the confidence of the AI’s response,
but it seemed a bit abstract. I would have preferred a simple percentage
confidence to the symbol that resembles a wifi connection symbol. I
think that would have been more helpful and precise.

Preference to-
wards textual
confidence info

The access to a confidence score provided by the system, which reflects
the model’s estimate of the accuracy and reliability of its responses.

Interpretation
of confidence
score

EC8

. . . This transparency from the assistant helped me understand the po-
tential biases or external influences that might affect the objectivity of
the responses. This awareness of limitations enhances the user’s critical
evaluation of the information provided and promotes a more informed
interaction with the assistant.

Encouraging
information
verification

. . . The assistant frequently indicated its confidence levels, ranging from
80% to 100%, alongside certain responses. This information was pro-
vided as a transparency measure to indicate the system’s level of cer-
tainty regarding the accuracy or relevance of the information shared.

Interpretation
of confidence
score

EC9
The assistant’s responses provided valuable information and insights on
the respective topics, but it’s essential to acknowledge potential limita-
tions.

No info about
limitations

EC10
There were no qualifying statements like “I think” or “I believe” , it
stated it’s answers confidently as if they were facts.

Confidence in-
dicated by NL
statements
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7.5 Discussion

Our results show that high-quality explanations related to the source, system
confidence, and response limitations increase the user-perceived usefulness of
the response and user ratings for explanations. Additionally, noise in the expla-
nations of the response provided by the system has a significant impact on user
experience in general (almost all response dimensions are affected). These re-
sults align with previous research in AI-assisted decision-making claiming that
confidence scores can help calibrate people’s trust in the system model, but
they are not sufficient to increase the success rate of interactions (Zhang et al.,
2020c). In our study, we observe a significant effect of familiarity with the topic
on response assessment, indicating the need for the user’s background knowl-
edge to complement the system’s errors (Zhang et al., 2020c). In terms of user’s
sensitivity to inaccuracies in the responses and explanations, we show that users
are not able to detect factual errors or biases in the provided information. The
qualitative analysis shows that workers do not point out these inaccuracies ex-
plicitly. Similarly, they cannot identify flaws in the explanations related to
response limitations. This aligns with previous research, demonstrating that
explanations might cause users to follow the system’s advice more often, even
when it is wrong (van der Waa et al., 2021). Our study is not conclusive about
the preferred way of presenting explanations to the user. We find that limi-
tations tend to receive higher user ratings when presented in a textual form,
whereas, for confidence, we observe the opposite trend, which complies with the
findings reported in the field of recommender systems (Shani et al., 2013). Ad-
ditionally, limited mentions of the presentation mode in the free-text feedback
obtained from crowd workers may imply that the format of explanations is not
a crucial factor in this setting.

Insights from this study about communicating explanations to facilitate
users’ assessment of the provided information need to be put in a broader context
of system explainability and the associated effort/gain trade-off (Cheng et al.,
2019). While these explanations complement the system response with compo-
nents that enable users to assess responses more objectively, they demand more
time and effort than merely reading the provided response. Optimizing user
gain is a complex task influenced by various factors. Firstly, the relationship
between the user’s gain and the effort associated with the amount of additional
information is not linear; while more explanations generally increase gain, there
is a tolerance threshold. Exceeding that threshold may overwhelm users, caus-
ing a drop in gain. Secondly, the overall quality of the system’s response and
explanations significantly impacts gain. This is evidenced by our findings: users
struggle to detect flaws in provided responses when explanations contain noise
or errors, and providing no explanations is more useful than providing noisy
ones. Thirdly, the relevance of explanations depends on the topic’s complexity
and user familiarity, with more complex topics benefiting from adjusted and
detailed information. Additionally, the optimal effort-gain trade-off is likely to
be user-dependent, requiring personalized adjustments in the amount, level of
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detail, and presentation of the information, which is evidenced by various prefer-
ences for the confidence display we observed in the feedback. To our knowledge,
investigating the adaptation of responses based on user preferences, previous
interactions with CIS systems, and topic complexity has yet to be explored.

7.6 Conclusions

Response transparency has not received significant attention in a CIS setting.
Our user study addresses this gap by examining various ways of explaining the
source of the information provided by the system, the system’s confidence in the
response, and its limitations. In answer to RQ3.3 (How to generate responses
transparent about the system’s confidence and limitations?), we have explored
the effect of noise and different presentation modes of these explanations on
users’ assessments of responses and explanations. Our findings show that high-
quality explanations about source attribution, system confidence, and response
limitations improve user-perceived usefulness and explanations ratings. Results
reveal lower user-reported usefulness scores when explanations contain noise,
although these scores seem insensitive to the quality of the response. In terms
of presentation mode, we do not observe significant differences between visual
and textual explanations—suggesting that the format of explanations may not
be a critical factor in this setting—but users presented with no explanations,
surprisingly, found the responses more useful. To our knowledge, this study
is the first to examine response transparency in CIS, highlighting the need for
further research to enhance transparency in CIS responses.



Chapter 8

Conclusions

I stepped from Plank to Plank
So slow and cautiously
The Stars about my Head I felt,
About my Feet the Sea.

I knew not but the next
Would be my final inch —
This gave me that precarious Gait
Some call Experience.

— Emily Dickinson

This chapter concludes the thesis by summarizing its key contributions, re-
visiting the main research questions, and discussing how they have been ad-
dressed through the proposed methods. It highlights the findings’ implications
for the development of transparent, reliable, and explainable conversational
information-seeking systems (CIS). Additionally, the chapter acknowledges the
limitations of the work and identifies avenues for future research.

8.1 Summary

In this section, we revisit the main findings of this thesis, guided by the research
questions outlined in the introduction.

138



CHAPTER 8. CONCLUSIONS 139

8.1.1 CIS System Baseline
To advance research in the area of transparent, factual, and grounded CIS sys-
tems, we introduced a competitive baseline for both the retrieval component, to
collect the sources answering the user’s query, and the generation component,
to synthesize this information into a natural answer.

RQ1a: What are strong baselines for passage retrieval in CIS sys-
tems? We first established a strong retrieval baseline by reproducing existing
approaches for conversational passage retrieval in the context of TREC CAsT
(see Chapter 3). Specifically, we replicated the top-performing TREC CAsT’22
submission and the organizers’ baseline, both following a standard retrieve-
then-rerank pipeline with a query rewriter. Our results align with previous
research (Yan et al., 2021), confirming that more advanced retrieval models con-
sistently improve performance across metrics and datasets. We experimented
with different query rewriting methods within an alternative retrieval pipeline,
demonstrating that applying different methods at various stages can be benefi-
cial. Based on our findings, we concluded that a combination of sparse and dense
retrieval, enhanced with pseudo-relevance feedback in the first-pass retrieval and
pointwise/pairwise reranking, coupled with a fine-tuned query rewriting com-
ponent, represents a strong baseline for conversational passage retrieval.

RQ1b: What are strong baselines for response generation in CIS
systems? We adopted an approach inspired by retrieval-augmented open-
domain QA using an off-the-shelf LLM without additional training (Ren et al.,
2025; Ram et al., 2023; Muhlgay et al., 2023) (see Section 6.3.2). Our prompting
strategy is inspired by retrieval-augmented QA LLM instructions from Ren et al.
(2025). As a second baseline, we tested Chain-of-Thought prompting (Wei
et al., 2022), incorporating a single in-context learning (ICL) demonstration
manually curated from the TREC CAsT’22 dataset (Owoicho et al., 2022). The
performance of both baselines was evaluated on the TREC RAG’24 dataset
using the AutoNuggetizer framework, confirming their competitiveness.

8.1.2 Understanding CIS Limitations
Recognizing that high retrieval performance does not necessarily guarantee use-
ful responses, we explored factors limiting response quality and examined finer-
grained information units beyond documents or passages to enhance the cover-
age, accuracy, and completeness of the responses.

RQ2.1: Which limitations in the responses are detectable by users?
We conducted two crowdsourcing experiments examining user perceptions of
unanswerable questions and incomplete responses in a setting based on the
TREC CAsT benchmark (Dalton et al., 2020; Owoicho et al., 2022) (see Chap-
ter 4). Specifically, we explored users’ ability to recognize factual inaccuracies,
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pitfalls, and biases related to viewpoint diversity by carefully controlling experi-
mental conditions in manually crafted responses that simulate CIS interactions.
Our findings indicated that users are more adept at detecting viewpoint diver-
sity issues and response biases than factual errors or problems related to source
validity. The insights gained from these experiments guided our efforts toward
building transparent and reliable response mechanisms. Specifically, users’ dif-
ficulty in detecting factual inaccuracies motivated our work on unanswerability
detection and the development of more granular response generation techniques.

RQ3.1: How to identify core information units in the relevant pas-
sages that need to be included in the response? We created CAsT-
snippets, a high-quality dataset for conversational information seeking, featur-
ing snippet-level annotations for all queries in TREC CAsT ’20 (Dalton et al.,
2020) and ’22 (Owoicho et al., 2022) (see Chapter 5). To ensure data quality,
we extensively explored different task designs and trade-offs for snippet annota-
tion through crowdsourcing, experimenting with various interfaces and worker
qualification criteria. Our approach was informed by a preliminary study evalu-
ating multiple annotation setups, platforms, and worker pools. Based on these
findings, we collaborated closely with a selected group of highly engaged crowd
workers, releasing tasks in daily batches and providing continuous feedback.
Compared to related datasets such as SaaC (Ren et al., 2021) and QuaC (Choi
et al., 2018), the CAsT-snippets dataset provides a greater number of annota-
tions per input text, with snippets that are longer on average. Our close col-
laboration with experienced annotators ensured high-quality data and yielded
valuable insights to inform future response generation methods.

RQ2.2: How to detect factors contributing to incorrect, incomplete,
or biased responses? We proposed a mechanism for detecting unanswerable
questions where the correct answer is either absent from the corpus or cannot
be retrieved (see Chapter 5). Our baseline approach employs a sentence-level
classifier to determine whether an answer is present, then aggregates these pre-
dictions at the passage level before producing a final answerability estimate
across top-ranked passages. We evaluated multiple variations of this method
with different configurations. To enable training and evaluation, we extended
the CAsT-snippets dataset with answerability labels at the sentence, passage,
and ranking levels, introducing the CAsT-answerability dataset. Despite their
simplicity, our baseline models outperformed a state-of-the-art LLM in answer-
ability prediction. By assessing whether a question can be at least partially an-
swered using the top-ranked passages, we reduce the risk of generating responses
based on irrelevant or nonexistent answers, thereby mitigating hallucinations (Ji
et al., 2023).

8.1.3 Addressing CIS Limitations
Ensuring grounding and transparency in CIS-generated responses is crucial
for fostering user trust and enabling informed decision-making (Radlinski and
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Craswell, 2017; Azzopardi et al., 2018). Our goal was to generate responses that
(1) synthesize the requested information, (2) ground it in specific facts from re-
trieved passages, (3) articulate the system’s confidence, and (4) acknowledge its
limitations. By explicitly communicating these limitations, we encourage users
to examine the responses more critically.

RQ3.2: How to ensure the grounding of responses in the retrieved
sources? Grounding responses in specific facts from retrieved passages can be
ensured by operating on fine-grained information snippets (see Chapter 6). We
proposed GINGER, a multi-stage approach that constructs responses by leverag-
ing information nuggets from top-ranked passages. GINGER employs clustering,
reranking, summarization, and fluency enhancement to produce concise, infor-
mative, and non-redundant responses. This method offers several advantages:
(1) maximizing information within length constraints, (2) providing source at-
tribution for verifiability, (3) guiding users with relevant follow-up questions,
and (4) allowing control over response completeness. Automatic evaluation
demonstrated that GINGER outperforms the baseline in grounding and source
entailment. Evaluation with the AutoNuggetizer framework further showed
that GINGER achieves top performance in the Augmented Generation task at
the TREC RAG’24 track. The human evaluation showed a clear preference
for GINGER in terms of conciseness and confirmed that it generates more useful
follow-up questions.

RQ3.3: How to generate responses transparent about the system’s
confidence and limitations? We conducted a user study to explore different
ways to communicate (1) the sources of information, (2) the system’s confidence
in its responses, and (3) the system’s limitations (see Chapter 7). We examined
how noise and different explanation formats affect users’ assessments of both re-
sponses and explanations. Drawing inspiration from prior work on recommender
systems, we experimented with various methods to convey this information, in-
cluding natural language explanations (Rechkemmer and Yin, 2022), UI ele-
ments (Lu and Yin, 2021), and granular confidence scales (Shani et al., 2013).
Our findings showed that high-quality explanations about source attribution,
system confidence, and response limitations improve user-perceived usefulness
and ratings. However, noise in explanations negatively impacts the overall user
experience. These results align with AI-assisted decision-making research, which
suggests that while confidence scores can calibrate trust, they don’t necessar-
ily increase interaction success (Zhang et al., 2020c). We also found that users’
topic familiarity strongly influences response assessments, underscoring the need
for background knowledge to complement system errors (Zhang et al., 2020c).
Additionally, users struggled to detect factual errors or biases in responses,
as crowd workers rarely pointed out inaccuracies or flaws in explanations. This
supports prior research showing that explanations can increase trust, even when
the system is incorrect (van der Waa et al., 2021). Our study did not provide
a clear answer on the preferred explanation format. However, users tended to
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rate textual explanations of system limitations more favorably, while confidence
indicators are better received in other formats, a trend consistent with recom-
mender system research (Shani et al., 2013). Free-text feedback from crowd
workers suggests that presentation format may not be a critical factor in this
context.

8.2 Limitations

We acknowledge several limitations that apply throughout this work.

8.2.1 Nugget Identification and Answerability Detection
as Binary Tasks

In the CAsT-snippets dataset, we approach information nugget identification
as a binary decision while in reality, it is a more granular task, as snippets
can vary in relevance and complexity (see Chapter 5). They may contain exact
facts fully answering the question, additional enriching details, or only address
some aspects of the question. Similarly, we frame answerability as a binary
decision: a question is considered answerable if at least one sentence in the
retrieved passages contains the answer (or part of it). However, answerability
is inherently more nuanced. A system might retrieve partial but insufficient
information, leaving gaps in the response. A more realistic approach would
be to model answerability on an ordinal scale (e.g., unanswerable, partially
answerable, fully answerable). However, this would require complete answers as
ground truth, explicitly specifying different facets of the response–data that is
currently unavailable in any existing information-seeking dataset, conversational
or otherwise that we are aware of.

8.2.2 Restricted Scope of Answerability
Our experiments define answerability based on the top-n retrieved passages,
as determined by ground truth relevance judgments from TREC CAsT (see
Chapters 4 and 5). However, in practical CIS scenarios, answerability may need
to be assessed across the entire corpus, multiple corpora, or external expert
knowledge. Furthermore, our work considers answerability primarily in terms of
factual correctness and source attribution. We attempted to introduce interme-
diate conditions in our user studies, such as factually correct responses without
source attribution and factually incorrect responses with invalid sources, but
these conditions still do not fully capture the spectrum of answerability (e.g.,
severity of factual errors, number of sources used, source credibility). Address-
ing this would require significantly more granular experimental conditions and
extensive human annotations.
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8.2.3 Operationalization of Viewpoint Diversity
In our user studies, viewpoint diversity is operationalized in a simplified manner:
a response is considered diverse if it covers at least two different perspectives
(see Chapter 4). However, this does not ensure that all possible viewpoints
are represented. Due to response length constraints, some perspectives may
be omitted. Additionally, not all viewpoints may be present in the top-ranked
passages, and identifying them would require expert knowledge or a dataset
with explicitly annotated answer facets and sources–which, to our knowledge,
does not yet exist for information-seeking tasks.

8.2.4 Limitations of User Studies
To manage the complexity and cost of large-scale data collection, our user stud-
ies focus on single-turn interactions, despite the inherently multi-turn nature of
CIS dialogues (see Chapters 4 and 7). While inspired by the TREC CAsT set-
ting, our analysis is constrained to a limited number of representative queries.
This means our experiments do not fully reflect real-world CIS interactions,
where user needs evolve dynamically over multiple turns. Another limitation
is our reliance on Amazon Mechanical Turk (MTurk) crowd workers, who may
not fully represent the diversity of CIS users. Additionally, our studies do not
explicitly control for participant biases, leaving this as an open area for future
investigation. Lastly, our findings are inherently tied to the test collections used
in our experiments. While they offer valuable insights, results may differ when
applied to other datasets or real-world CIS systems.

8.3 Broader Context

As conversational systems increasingly take on responsibilities traditionally han-
dled by users, the risk of misalignment with user needs grows. Without a deep
understanding of user needs and accurate personalization, systems may gener-
ate responses that are misleading, incomplete, or suboptimal. As conversational
agents continue to evolve, striking a balance between automation and user con-
trol will be critical to ensuring both reliability and user satisfaction. This chal-
lenge underscores the importance of explainability, ensuring that users remain
informed and empowered rather than overly dependent on system outputs. A
poorly designed CIS system could inadvertently reinforce biases, increase uncer-
tainties, or harm user trust, ultimately reducing its effectiveness in real-world
applications.

The findings of this thesis should be interpreted within the broader context of
system explainability and the associated user effort/gain trade-off (Cheng et al.,
2019). While explanations enrich system responses by providing transparency,
uncertainty estimates, or source attributions, they also require additional cog-
nitive effort from users. As illustrated in Figure 8.1, explainability exists on
a spectrum: at one extreme, systems offer no insights into their limitations or
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Figure 8.1: The trade-off between user effort and gain related to explanations
provided by the system.

reasoning processes; at the other, they provide comprehensive details on re-
sponse generation, potential pitfalls, and reliability signals. Optimizing user
gain is a complex process—more explanations generally improve user trust and
response assessment, but excessive details can overwhelm users, reducing over-
all benefit. Our findings highlight that explanations must be both accurate and
appropriately tailored. Users may still struggle to detect errors, especially when
explanations contain noise, and there is a risk that explanations may lead users
to over-rely on incorrect AI-generated responses (van der Waa et al., 2021). Ad-
ditionally, the optimal balance between effort and gain is likely user-dependent,
necessitating personalized adjustments in the amount, level of detail, and pre-
sentation of explanations.

Finally, the increasing integration of LLMs into conversational systems brings
significant ethical and practical concerns. LLMs are prone to hallucinations,
generating plausible but incorrect information, which can mislead users in criti-
cal decision-making contexts. Additionally, their deployment involves high com-
putational costs, which limit accessibility and concentrate advancements within
resource-rich institutions, widening the gap between well-funded and lower-
resourced research communities. The environmental impact of training and
running large-scale models also raises ethical concerns, as these models require
vast amounts of energy (Chien et al., 2023). Furthermore, reliance on LLMs via
APIs introduces data privacy and governance challenges, as organizations must
carefully consider how user queries and interactions are processed, stored, and
potentially used for further model training. Addressing these challenges requires
a multi-faceted approach, balancing innovation with sustainability, accessibility,
and ethical responsibility.
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8.4 Future Directions

Our findings highlight the need for further research on response limitation iden-
tification and user-centered evaluation of responses. Additionally, exploration
of explainability, personalization, and user biases will be crucial for enhancing
user trust and system reliability.

8.4.1 Response Limitation Detection
Beyond answerability detection, future work should extend response limitation
detection to capture a broader range of system constraints that impact the
quality of generated responses. These include viewpoint diversity, particularly
when handling controversial topics (Draws et al., 2021b); partial unanswerabil-
ity, where only some aspects of a question can be addressed; temporal validity,
ensuring responses remain accurate within specific timeframes (Campos et al.,
2015); and bias in queries, which can shape both retrieval and response genera-
tion (Azzopardi, 2021). Additionally, subjectivity in source text and incomplete
background information can impact a system’s ability to generate reliable re-
sponses. Future models should integrate methods for detecting and explicitly
communicating these limitations to users, allowing them to interpret responses
more critically.

8.4.2 Experimental Scope
Future research should expand the experimental scope by incorporating a broader
range of topics in user studies to increase result sensitivity. Additionally, alter-
native scales, such as magnitude estimation (Turpin et al., 2015), could pro-
vide more granular insights into user satisfaction with system responses. The
modular design of GINGER offers an opportunity to explore constraint-based
response generation, including adapting response length based on user prefer-
ences and managing redundancy in multi-turn conversations by considering pre-
viously disclosed information. Future studies should also analyze explanations
in CIS settings by examining the impact of response specificity, interactivity,
and conversation history on user experience.

8.4.3 Personalization
Communicating through natural language dialogue enables the system to infer
more about a specific user. By maintaining a model of the user’s background,
domain knowledge, goals, and capabilities, the overall effectiveness of a conver-
sational search system is enhanced (Anand et al., 2021). Since the information
need is inherently tied to the user’s context (Wilson, 1981, 1999), only a system
that understands both the user’s needs and their context can offer truly per-
sonalized experiences (Zhang et al., 2018b). A critical aspect of personalization
is gathering user preferences and storing them, alongside personal information,
in a form that is easily accessible by the system. This could be in the form of
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sets of sentences in natural language (Zhang et al., 2018a) or through the use of
personalized knowledge graphs (PKGs) (Bernard et al., 2024; Skjæveland et al.,
2024). A PKG is defined as a structured source of knowledge about entities
personally related to the user and the relationships between them (Balog and
Kenter, 2019). As a natural choice for personalized search systems, PKGs can
support multiple components, such as query understanding, personalized rank-
ing of results, and proactive system initiatives (Balog and Kenter, 2019). These
graphs can store personal knowledge about a user’s profession, hobbies, or pref-
erences (Tigunova et al., 2020). Despite advances, personalized CIS systems
remain an underexplored area, particularly in balancing personalization with
fairness or utilizing PKGs for storing user data. Another open challenge in the
CIS system is the personalized presentation of results, which involves adjusting
content, terminology, and response length to meet individual user preferences.

8.4.4 Addressing Cognitive Biases
Users engaging in information-seeking activities are susceptible to various cogni-
tive biases, which hinder the absorption of information provided by the system.
Cognitive biases significantly affect information seeking, retrieval behaviors, and
outcomes (Azzopardi, 2021). A major concern is whether the impact of these
biases is amplified by the vast amount of already biased information available
on the Web, such as activity bias, data bias, algorithmic bias, and personal-
ization (Baeza-Yates, 2018). Common biases in search settings include confir-
mation bias (a tendency to seek confirmatory information) and projection bias
(projecting current thoughts onto past or future experiences) (Azzopardi, 2021).
Identifying and addressing cognitive biases in conversations remains a significant
challenge. Existing research on cognitive biases primarily focuses on traditional
search engines, which offer less constrained response formats compared to CIS
systems, typically providing short textual responses. One of the key open ques-
tions is how to distinguish between bias and preference in personalized CIS
systems (Gerritse et al., 2020).
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Appendix A

Limitations of CIS Systems

This appendix contains additional details, results, and analysis for Chapter 4.

A.1 User Studies Design

The design of the answerability study and the viewpoints study followed the
same principle, where workers were asked to complete one HIT, consisting of
ten query-response pairs. The task consisted of:

• HIT instructions

• Ten CIS interactions

• Demographics questionnaire

The instructions differ slightly between the studies. In the answerability study ,
we used the following instructions:

You are a search system user interested in specific topics. You pose
a set of questions and get responses from the system in a form of
short texts. Read carefully each question and the system’s response
and answer the questions below.

Rely solely on you own judgment, restrain from using additional
sources other than the ones referenced in the response.

Important note: We kindly request your utmost attention and
thoroughness in responding to the questions. Please be aware that
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Table A.1: Comparison of different datasets containing answerability labels.
QPP indicates query-passage pairs.

Demographic
Option

User study

Information Answerability Viewpoint

Age

18-30 34 3

31-45 35 12

46-60 19 10

60+ 7 2

Prefer not to say 1 0

Education

High School 19 8

Bachelor’s Degree 59 16

Master’s Degree 15 2

Ph.D. or higher 2 0

Prefer not to say 1 1

Gender

Male 44 15

Female 52 12

Other 0 0

Prefer not to say 0 0

answers lacking sufficient justification that indicate a lack of atten-
tiveness, may be subject to rejection.

In the viewpoints study , we used the following instructions:

You are a search system user interested in specific topics. You pose a
set of questions and get responses from the system in a form of short
texts. Read carefully both the question and the system’s response and
answer the questions below.

Important note: We kindly request your utmost attention and
thoroughness in responding to the questions. Please be aware that
answers lacking sufficient justification that indicate a lack of atten-
tiveness, may be subject to rejection.

Demographic information for both user studies is presented in Table A.1.

A.2 Responses in the viewpoints study

In the viewpoints study , we focus on a widely understood diversity of viewpoints.
It is left to the user to judge whether the expressed viewpoints are diverse
enough or not. The accurate response equally covers various points of view
and/or aspects of the topic. The flawed response only mentions one point of
view and/or aspect of the topic or mentions several but elaborates only on one
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Diversity Balance

Figure A.1: Distribution of diversity and balance scores (on Y axis) for differ-
ent variants of the responses (on X axis) collected in the survey preceding the
viewpoints study .

of them. The last experimental condition with a lack of both diversity and
balance makes no sense because the text discussing only one point of view can
not be unbalanced.

A.2.1 Answers Quality Assurance
We introduce an additional step for viewpoints study to validate the understand-
ing of our proposed response dimensions. This additional step for optimizing
queries and responses is introduced only for the viewpoints study because the
problem of controversy and topic broadness is more subjective than the problem
of answerability. This step will help us identify question-answer pairs that are
not good representatives of the problem.

We select 12 questions and manually create 3 variants of the response for each
of them. We create small surveys where expert annotators are presented with
three topics and lists of recommended resources used to generate the answers.
The expert annotators are asked to explore the topics to become familiar with
basic concepts and problems related to each topic. We provide them with the
links to the entire web pages or articles, without information about the specific
passages that were used for generating the response. Then, they are presented
with different variants of the answers to the questions about explored topics and
asked to judge the diversity and balance of each of the provided question-answer
pairs. For each question-answer pair used in the answerability study , we collect
scores between 1-5 for diversity and balance from three expert annotators (12
annotators in total). We opted to release these surveys on the crowdsourcing
platform because we wanted to have control over the time spent by the partici-
pants on actually exploring the topics. We employed PhD candidates for their
academic skills in exploring new domains due to the nature of their work. One
expert annotator’s answers were excluded from the study due to an incorrect
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understanding of the task reported in the feedback after task submission.
The setup of the study encourages exploring the topics before assessing the

questions. Therefore, the obtained scores can be assumed to come from users
with high familiarity with the topics (experts). We focus on the outliers in
the scores for ECV

1 (in theory the best answer - multiple viewpoints, balanced)
and ECV

3 (in theory the worst answer - single viewpoints, imbalanced (see Fig-
ure A.1). We exclude questions for which the score for ECV

1 is the furthest
below the 1st quartile in terms of diversity and the question for which the score
for ECV

3 is the furthest above the 3rd quartile in terms of balance. These
intuitively correspond to the question where ECV

1 is not diverse enough, and
ECV

3 is too balanced. We exclude the query for which the response variant
corresponding to the first experimental condition (multiple viewpoints covered
to the same extent) is judged as not diverse enough and the query for which
the response variant corresponding to the third experimental condition (single
viewpoint mentioned and covered) is judged as too balanced. This additional
step aims at improving the quality of input data for the user study, ensuring
meaningful differences between answer variants and similar quality of answers
between the questions.



Appendix B

Snippet-level Annotations for Predicting
Query Answerability

This appendix contains additional details, results, and analysis for Chapter 5.

B.1 CAsT-snippets Dataset

The crowdsourcing tasks for TREC CAsT’20 and ’22 datasets were released on
Amazon MTurk only for a small group of trained crowd workers. The qualifica-
tion task has been completed by 20 MTurk workers with the results manually
verified by experts. From the 20 workers who completed the qualification task,
we chose 15 that provided results of the highest quality. Each worker received
feedback on the provided responses and additional questions if needed. Sev-
eral rounds of discussion that emerged from the qualification task resulted in
extended guidelines with additional points addressing the challenging aspects
identified in the annotation task:

• Task name: Snippet annotation

• General instruction: Identify all the text spans that contain key pieces of
the answer to a given question

• Detailed instructions: Your task is to identify all the text spans that
contain key pieces of the answer to a given question. Text spans should
contain a single piece of information, be as short as possible while self-
contained, and can not overlap.
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Paragraph-based snippet annotation

Your task is to identify all the text spans that
contain key pieces of the answer to a given
question.

Text spans should contain a single piece of
information, be as short as possible while self-
contained, and can not overlap.

Sentence-based snippet annotation

a) Choose all sentences that contain information relevant
to the query.

b) Your task is to identify all the text spans that
contain key pieces of the answer to a given question.

Text spans should contain a single piece of information,
be as short as possible while self-contained, and can
not overlap.

For every sentence chosen in a)

Highlight the text spans in this
passage that should be included in
the answer to the question {Query}

{Passage}

Text spans from passage

Query: {Query}

 {Sentence 1}
 {Sentence 2}
 {Sentence 3}
 {Sentence 4}

Highlight the text spans in this sentence
that should be included in the answer to

the question {Query}

{Sentence}

Text spans from sentence

Figure B.1: Different task designs for snippet annotation.

• Extended guidelines: Your task is to identify all the text spans that contain
key pieces of the answer to a given question. Text spans should contain
a single piece of information, be as short as possible while self-contained,
and can not overlap. The task of text spans annotation is non-trivial
and requires a thorough reading of both questions and the accompanying
passages. While performing the task keep in mind that:

– An answer may be present in many different forms. It can be a short
name, numerical value, or a longer explanation spread over several
sentences. We want you to choose spans that are as short as possible
while self-contained. Each chosen text span should make sense given
the question, not necessarily as a standalone text.

– Several different answers may be given in one passage. We want you
to choose all the answers as separate spans. If the context of the
answer changes its meaning or makes it different from other selected
spans, the context should be included in the span as well.

– Passages may contain noise in the form of links, and web page head-
lines. Try not to contain it in the spans, while remembering to keep
spans self-contained.

– The answer may not be present in the passage. Don’t select any span
if you think that there is no information in the passage that could



APPENDIX B. PREDICTING QUERY ANSWERABILITY 157

answer the question. However, we want you to select text spans that
provide a partial answer even if full is not present.

– In the case of yes/no questions, it may be helpful to imagine how you
would follow up the yes or no with some explanation and then find
those pieces of information in the passage.

– In this task, we don’t consider the problem of subjectivity of the
statements in the passages. The text span that is obviously an opin-
ion is as good as a text span that is perfectly objective.

We want to build your intuition about what is expected from you by
providing you with a brief explanation of the problems that we want to
solve with the collected data:

– Detecting unanswerability and partial answerability in questions given
a passage → Given a question-passage pair we want to be able to say
to what extent the question can be answered. Eventually, we also
want to point out the missing pieces of information in the passage.

– Generating concise, informative answers grounded in statements from
the passages → Given a question-passage pair we want to be able to
detect the text spans that contain key pieces of information required
to answer the question and generate the response by looking only at
the question and the selected text spans.

The plan for data annotation:

– We will release one batch containing 25-85 question-passage pairs for
every worker every day for the upcoming two weeks. The amount
of HITs released will differ between the workers every day, but the
overall amount of assigned HITs will be almost the same for everyone.

– HITs in each batch contain questions about one specific topic. Even
though questions are related, they should be treated and answered
independently of each other.

– You’ll have 24h to annotate your batch. We’ll let you know here
every time a new set of tasks is released.

– We will try to be available on Slack every day so that you can ask
questions.

– After obtaining all the annotations from all the workers we will do
a manual verification of a sample of submissions and grant the 3
top-performing workers with the bonus.

– We need one person to spend a few minutes with us tomorrow early in
the day to verify that there are no technical issues with the released
tasks.

We will release a new batch for everybody every day before 6 am EST.
The HITs from each batch will be available for you for 3 days. However,
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Table B.1: Comparison of different datasets containing answerability labels.
QPP indicates query-passage pairs.

SQuAD 2.0 CAsT-snippets CAsT-unanswerable

# questions 142,192 371 371

# ans. questions 92,749 365 0

# unans. questions 49,443 6 371

# QPP 142,192 1,855 1,855

# ans. QPP 92,749 1778 0

# unans. QPP 49,443 77 1,855

# sent. w/ answers in ans. QPP 106,146 6395 0

# sent. w/o answers in ans. QPP 369,025 5839 0

# sent. w/o answers in unans. QPP 250,365 453 12,751

if you manage to complete all HITs assigned to you within 24 hours (till
6 am EST the following day), you will be granted an additional bonus.
We still want you to complete all the HITs from every batch assigned to
you. If you failed to do so within 3 days, your HITs will be released for
someone else in the group.
We are not expecting you to find anything in the passage. Going for the
“no answer” option is perfectly fine. Basically, there are three options in
this task: no answer, one span/multiple spans containing the answer, and
one span/multiple spans that contain the partial answer. The third case
is the most tricky. There, we are interested only in spans that actually
contain a part of the answer but don’t answer the question entirely (some
information is still missing). It is not enough for the span to be somehow
relevant, it needs to actually answer some part of the question. For ex-
ample, if you have a question about how is a carrot cake made but the
passage lists only ingredients. Ingredients are still a partial answer and
they should be selected.

• Context example: Question: “How many words must a man type, if a man
is to type words?”. If the passage is “It’s good to type words. Words are
useful. A man must type 100 words if a man is to type words.” the span
would be “100”. If the passage is “It’s good to type words. Words are
useful. A man must type 100 words if he is a dancer.” the span would
be “100 words if he is a dancer”. But if the passage is “It’s good to type
words. Words are useful. A man must type 100 words if he is a dancer.
A man must type 101 words is he is a writer.” the spans would be: “100
words if he is a dancer” and “101 words is he is a writer”.

The preliminary task study of snippet annotation was considered in two different
task designs: paragraph-based and sentence-based. The annotation task designs
are presented in Figure B.1.
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Table B.2: Answerability annotations from the CAsT-answerability dataset on
sentence (S), passage (P), and ranking (R) levels for the following query: What’s
important for me to know about the safety of smart garage door openers?

Passage ID Sentence from the Passage
Answer.

S P R

MARCO_7107975

If you’re looking to get a little more creative with ... 0

1

1

Echo can connect with this device to tell you if you’ve ... 1

You can even say, Alexa, tell Garageio to close my ... 1

MARCO_8270733

The Good The Chamberlain MyQ Garage is one of ... 0

0

The Bad It works with a growing list of other smart ... 0

The Bottom Line Chamberlain’s MyQ Garage should ... 0

The MyQ isn’t a garage door opener as it says in ... 0

It works well and does exactly what you’d expect. 0

MARCO_8270733

The LiftMaster MyQ Home and Property Control ... 0

1
Imagine receiving an alert if you left your garage or ... 1

*** Note: Requires LiftMaster MyQ hardware and a ... 1

Learn more about compatible products and find a ... 0

B.2 CAsT-answerability Dataset

The CAsT-snippets dataset is built on the top-relevant passages and it is highly
imbalanced in terms of answerable and unanswerable query-passage pairs. To
address this issue we build a synthetic unanswerable CAsT dataset, referred to as
CAsT-unanswerable. Namely, for each query in the CAsT-snippets dataset, we
add 5 random non-relevant passages according to ground truth judgment as pas-
sages without an answer. Choosing passages with low relevance scores instead of
any random passages from the corpus increases the difficulty of unanswerability
detection as passages in the pool are taken from the top of rankings submitted
by participants to the TREC CAsT. The resulting dataset which is a concate-
nation of CAsT-snippets and CAsT-unanswerable, named CAsT-answerability,
contains around 1.8k answerable and 1.9k unanswerable question-passage pairs.
Statistics comparing different datasets considered in this work can be found in
Table B.1. A sample from the CAsT-answerability dataset can be found in Ta-
ble B.2. An example of extracting answerability labels on sentence level from
SQuAD 2.0 samples is presented in Figure B.2.

Answerability score prediction is performed with ChatGPT. We consider two
settings to predict the answerability of a question: given a passage (analogous
to the passage-level setup) and given a set of passages as input (analogous to
the ranking-level setup). We prompt the model to verify whether the question
is answerable in the provided passage(s) and return 0 or 1 accordingly.

In the passage-level setup, the passage-level predictions returned by Chat-
GPT are aggregated using fixed thresholds (0.33 or 0.66) to obtain a ranking-
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SQuAD 2.0 data sample

{
    "answers": {
        "answer_start": [94, 87],
        "text": ["10th and 11th centuries", "in the 10th and 11th
centuries"]
    },
    "context": "\"The Normans (Norman: Nourmands; French:
Normands; Latin: Normanni) were the people who in the 10th
and 11th centuries gave their name to Normandy, a region in
France. They were descended from Norse...",
    "id": "56ddde6b9a695914005b9629",
    "question": "When were the Normans in Normandy?",
    "title": "Normans"
}

input: 
[

When were the Normans in Normandy? [SEP]
The Normans (Norman: Nourmands; French:
Normands; Latin: Normanni) were the people
who in the 10th and 11th centuries gave their
name to Normandy, a region in France. ; 
When were the Normans in Normandy? [SEP]
They were descended from Norse...

       ]
labels: [1, 0]

Extracted training samples

input: question [SEP] sentence from context 
label: 1 if answer is contained in the sentence or
0 otherwise

Figure B.2: An example of extracting answerability labels on sentence level from
SQuAD 2.0 samples.

level prediction. In the passage-level answerability prediction, the data is gen-
erated only in the zero-shot setting using the following prompt:

• role: system
• content: You are an assistant verifying whether the question is answe-

rable in the provided passage. Return 1 if the answer or partial answer
to the question is provided in the passage and 0 otherwise. Return only
a number without explanation.

In the ranking-level setup, we experiment with both a zero-shot setting, where
neither examples nor context is given to the model, and a two-shot setting, where
two examples (one positive and one negative) containing a question followed by
two sentences extracted from the passage are provided. We use the following
prompt:

• role: system
• content: You are an assistant verifying whether the answer to the question

is included in the provided text. Return 0 if the answer is not given
in the text or 1 if the text contains an answer to the question. Return
only a number without explanation.

• role: user
• content: Question: Why does waste compaction slow the biodegradation

of organic waste? Text: Introduction. It is illegal to burn household
or garden waste at home or in your garden. Burning waste is not only
a nuisance to neighbours, it can release many harmful chemicals into
the air you breathe.

• role: assistant
• content: 0
• role: user
• content: Question: I remember Glasgow hosting COP26 last year, but unfor-

tunately I was out of the loop. What was the conference about? Text:
The 2021 United Nations Climate Change Conference, also known as COP26,
is the 26th United Nations Climate Change conference. This conference
will be the most important intergovernmental meeting on the climate crisis
since the Paris agreement was passed in 2015.
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• role: assistant
• content: 1



Appendix C

Grounded Response Generation

This appendix contains additional details, results, and analysis for Chapter 6.

C.1 Pilot Study

We run a pilot to validate the design of the response evaluation study and ensure
that the statements related to diversity and specificity capture the dimensions
we attempt to measure. We select ten queries from TREC CAsT’20 and ’22 that
are related to controversial topics or topics not broadly covered in the corpus.
For each query, we manually create two pairs of responses. The first pair contains
a ground truth response that is based on the top 5 passages according to the
relevance judgments and its reformulation generated by GPT-3 and verified
manually by the author of this thesis (rephrasing pair). The second pair of
responses contains a diverse response briefly covering different facets of the
topic but missing details about different aspects and a very detailed response
that focuses on one aspect of the answer and discusses it in detail at a cost of
diversity (coverage manipulation pair). Both responses are created manually
with the support of GPT-3 in polishing and/or summarizing the text. The
first pair of responses verifies whether the study is sensitive to responses of the
same quality. Ideally, crowd workers should not present preference towards any
of the responses in this pair. The second pair of the responses representing
coverage manipulation verifies whether crowd workers associate differences in
diversity and specificity with the statements included in the task. It works as a
validation of the formulation of response dimensions.

162
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Table C.1: Statements used in 3 different formulations of the pilot study for the
human evaluation of breath and depth of the responses. Each statements starts
with “The response ...”.

# Diversity Question Specificity Question

1 ... covers diverse information ... offers detailed information

2 ... encompasses a broad range of information ... provides specific details and explanations

3 ... covers various aspects or perspectives ... provides in-depth information

Table C.2: The results of three independent pilot studies for the human eval-
uation of breath and depth of the responses that differ in the formulation of
questions about response diversity and specificity. Rephr. indicates a rephras-
ing pair of responses. Cov. man. indicates a coverage manipulation pair of
responses.

#
Response Diversity votes Specificity votes ANOVA

pair variant R1 R2 R1 R2 Diversity Specificity

1
Rephr. 19 11 14 16 0.039 (S) 0.613

Cov. man. 26 4 15 15 0.0 (L) 1.0

2
Rephr. 25 5 18 12 0.0 (L) 0.125 (S)

Cov. man. 20 10 13 17 0.009 (M) 0.31 (S)

3
Rephr. 19 11 12 18 0.039 (S) 0.125 (S)

Cov. man. 22 8 12 18 0.0 (L) 0.125 (S)

Altogether, we release 20 unique tasks in the pilot study and each is com-
pleted by 3 unique crowd workers. Crowd workers with a greater than 97%
approval rate, over 10,000 approved tasks, and located in the US were qualified
to participate in the study. Workers were paid US$ 0.25 for successful task
completion. Workers who failed to correctly classify 4 out of 8 aspects or more
were rejected. The acceptance rate was around 68%.

We run three independent pilot studies that differ in the formulation of
questions about response diversity and specificity (see Table C.1). We observe
the smallest difference in votes for different response variants in the rephrasing
pair for both diversity and specificity for the first formulation of the pilot study
(see Table C.2). In the coverage manipulation response pair we observe the
biggest difference in votes between responses for 1 in diversity votes and in 3
for specificity votes. We also perform one-way ANOVA for each response pair
variant and question set with response variant (either 1 or 2) as an independent
variable and scores for diversity and specificity are dependent variables (1 if the
given response variant has been selected and 0 otherwise). The results confirm
our previous observations. Namely, for rephrasing the response pair variant we
observe the smallest effect of the response variant on diversity and specificity
scores for 1. In terms of coverage manipulation, we observe the largest effect of
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Table C.3: Evaluation of automatic nugget detection using ROUGE F1.

Information nuggets ROUGE F1

Detected by GPT-4 0.43

MTurk master workers 0.54

MTurk regular workers 0.36

Table C.4: Statistics about the number of information nuggets for different
inputs and nugget detection methods. Avg len indicates the average length of
nuggets in characters. “Gold” nuggets are from the CAsT-snippets dataset.

Input
Nugget Nuggets

det. Avg Med Max Avg len

relevant
Gold 11.25 10.50 22.00 165.97

GPT-4 10.61 9.00 29.00 87.55

irrelevant GPT-4 8.00 6.00 25.00 76.45

rephrased GPT-4 10.98 10.00 31.00 105.40

retrieved GPT-4 8.89 8.00 23.00 86.30

the response variant on the diversity score of 1 and on the specificity score of 3.
Given the results, in the final response evaluation study, we use the statement
for diversity from the first question set and the statement for specificity from
the third question set.

C.2 Additional Results

C.2.1 Automatic Nugget Detection
Automatic nugget detection with GPT-4 is evaluated using similarity to ground-
truth annotations from the CAsT-snippets dataset (ROUGE F1) (see Section
5.2). The agreement between ground-truth annotations and snippets detected
by GPT-4 is higher than the similarity against reference (expert) annotations
reported for two control topics in the original paper for regular MTurk workers
(see Table C.3). Even though nugget detection with GPT-4 does not reach the
performance of best-performing MTurk master workers, it still presents good
performance compared to human annotation variants considered in the CAsT-
snippets dataset development (see Chapter 5).

C.2.2 Nugget Detection and Clustering
We observe that GPT-4 detects a similar number of snippets compared to CAsT-
snippets ground truth annotations (see Table C.4). Interestingly, GPT-4 detects
a relatively large amount of snippets also in the passages annotated as irrelevant
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Table C.5: Statistics about the number of information clusters for different
inputs and clustering methods. Avg len indicates the average number of nuggets
per cluster.

Input
Nugget

Clustering
Clusters

det. Avg Med Max Avg len

relevant

Gold
BERTopic 3.48 3 8 3.26

LSA 5.09 5 10 2.22

GPT-4
BERTopic 3.32 3 10 3.21

LSA 4.89 4 12 2.18

irrelevant GPT-4
BERTopic 3.00 2 10 2.67

LSA 3.89 3 12 2.06

rephrased GPT-4
BERTopic 3.16 3 9 3.48

LSA 4.43 4 11 2.48

retrieved GPT-4 BERTopic 2.93 3 7 3.04

(based on relevance scores provided in TREC CAsT’20 and ’22 datasets). Snip-
pets detected by GPT-4 are significantly shorter than the ground-truth informa-
tion nuggets from the CAsT-snippets dataset. This implies higher granularity of
the automatically detected nuggets and as a consequence information nuggets
that may be not self-contained. Insufficient context for detected information
may result in hallucinations and unsupported statements in the summarization
step.

Regarding clustering, we observe that the CAsT-snippets dataset yields more
clusters, indicating greater diversity in the ground-truth annotated information
compared to nuggets detected by GPT-4 (see Tables C.5). The number of
nuggets per cluster is similar independently of the input and methods used. The
number of topics in LSA cannot be statistically determined, so by default, we
set the number of clusters to 50% of the information nuggets. Since BERTopic
automatically detects the number of clusters, a direct comparison between LSA
and BERTopic is not feasible. We observe similar amount of clusters for 5
irrelevant passages compared to other inputs, which can be caused by the fact
that nuggets detected in irrelevant passages are likely discussing various topics.
The lowest number of clusters is observed for 5 retrieved passages resulting
either from a lower number of nuggets compared to other inputs or the fact that
the top retrieved passages cover very similar information. The average number
of nuggets assigned to one cluster is similar independently of the input type and
nugget detection method.

C.2.3 Final Response Evaluation
Results for additional system variants calculated using RAGAs framework can
be found in Table C.6. Completeness scores for additional system variants are
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Table C.6: Automatic evaluation of responses using RAGAs framework.

Input Method Faithfulness Answer rel.

relevant

Baseline 0.79±0.24 0.94±0.04

GINGER w/ GTnuggets 0.78±0.25 0.87±0.14

GINGER -fluency w/ GTnugget 0.81±0.24 0.86±0.14

GINGER -fluency w/ GTnuggets+BM25 0.81±0.25 0.85±0.14

GINGER -fluency w/ GTnuggets+LSA 0.76±0.26 0.86±0.14

GINGER -fluency w/ GTnuggets+BM25+LSA 0.79±0.28 0.86±0.14

GINGER 0.69±0.30 0.87±0.14

GINGER -fluency 0.72±0.29 0.86±0.14

GINGER -fluency w/ BM25 0.72±0.29 0.86±0.11

GINGER -fluency w/ LSA 0.75±0.26 0.88±0.05

GINGER -fluency w/ BM25+LSA 0.72±0.27 0.87±0.06

retrieved

Baseline 0.71±0.36 0.92±0.15

GINGER 0.71±0.28 0.88±0.06

GINGER -fluency 0.70±0.25 0.87±0.05

irrelevant

Baseline 0.48±0.36 0.73±0.37

GINGER 0.47±0.29 0.75±0.27

GINGER -fluency 0.56±0.28 0.76±0.21

rephrased

Baseline 0.74±0.26 0.87±0.20

GINGER 0.75±0.26 0.88±0.05

GINGER -fluency 0.84±0.24 0.86±0.05

presented in Table C.7. The results of the additional analysis that compares
human judgments with the corresponding automatic metrics are presented in
Table C.8. We calculate Kendall’s correlation between coherence and answer
relevance, correctness and faithfulness, and sufficiency and faithfulness. The
correlation is calculated on the response level. Response dimensions evaluated
in the human study are not strongly correlated with the automatic measures
that we use. It means that automatic and human evaluation of the response are
complementary.

C.3 Prompts

This section presents prompts used by different components of the system.

C.3.1 GINGER
Prompt used for nugget detection:

Given a query and a passage, annotate information nuggets that contain
the key information answering the query. Copy the text of the passage
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Table C.7: Response completeness scores in terms of how many ground-truth
nuggets (from CAsT-snippets dataset) are entailed by the final response.

Input Method Completeness

relevant

Baseline 0.25

GINGER w/ GTnuggets 0.46

CAsT-snippets/BERTopic/DuoT5/GPT-4 0.48

GINGER -fluency w/ GTnuggets+BM25 0.45

GINGER -fluency w/ GTnuggets+LSA 0.44

CAsT-snippets/LSA/BM25/GPT-4 0.44

GINGER 0.29

GINGER -fluency 0.28

GPT-4/BERTopic/BM25/GPT-4 0.30

GINGER -fluency w/ LSA 0.29

GINGER -fluency w/ BM25+LSA 0.29

GINGER -fluency (deep) 0.17

GINGER -fluency (broad) 0.31

irrelevant

Baseline 0.07

GINGER 0.03

GINGER -fluency 0.04

retrieved

Baseline 0.17

GINGER 0.13

GINGER -fluency 0.16

rephrased

Baseline 0.20

GINGER 0.24

GINGER -fluency 0.25

GINGER -fluency w/ LSA 0.27

and put the annotated information nuggets between <IN> and </IN>.
Do NOT modify the content of the passage. Do NOT add additional
symbols, spaces, etc. to the text. Question: query Passage: passage

Prompt used for information cluster summarization:

Summarize the provided information into one sentence (approximately
35 words). Generate a one-sentence long summary that is short,
concise and only contains the information provided. text

Prompt used for improving response fluency:

Rephrase the response given a query. Do not change the information
included in the response. Do not add information not mentioned
in the response. Query: query Response: response

Prompt used for response generation from one cluster:
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Table C.8: Kendall’s correlation between the human scores and corresponding
automatic measures. Answer relevance and faithfulness are computed using the
RAGAs framework. Nugget entailment and contradiction are computed using
NLI. Completeness is the fraction of ground-truth information nuggets included
in the response.

Human score Automatic metric Correlation

Coherence Answer relevance 0.17*

Correctness Faithfulness -0.07

Correctness Nugget entailment -0.00

Correctness Nugget contradiction -0.11

Sufficiency Completeness -0.01

Breadth Completeness 0.08

Depth Completeness 0.13

Generate the answer to a query that is 3 sentences long (approxima-
tely 100 words in total) using the provided information. Use only
the provided information. You can expand the provided information
but do not add any additional information. text

C.3.2 Baselines
Prompt used by zero-shot one-step response generation baseline:

Generate the answer to a query that is 3 sentences long (approxima-
tely 100 words in total) using the provided information. Use only
the provided information and do not add any additional information.
Question: query Passage: passages

Prompt used by Chain-of-Thought two-shot response generation baseline:

TASK

You are an assistant generating responses to user questions based
on the provided information. Your response should rely on the con-
text passage and it should not incorporate any additional informa-
tion.

SPECIFIC STEPS

Follow a structured step-by-step approach to ensure relevance and
coherence in the generated response:
- Step 1: extract key pieces of information relevant to the ques-
tion from the provided passage
- Step 2: group related pieces if information based on the aspect
of the topic they discuss or the point of view they represent
- Step 3: rank groups of information based on their relevance to
the query
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- Step 4: use the top groups of relevant information to write a
coherent and concise response

The final response should be three sentences long (approximately
100 words).

EXAMPLE

Question: Tell me more about the Blue Lives Matter movement.

Passage: [passage]The internet facilitates the spread of the message
’All Lives Matter’ as a response to the Black Lives Matter hashtag
as well as the ’Blue Lives Matter’ hashtag as a response to Beyonce’s
halftime performance speaking out against police brutality. Following
the shooting of two police officers in Ferguson and in response
to BLM, the hashtag [Blue Lives Matter or hashtag BlueLivesMatter]
was created by supporters of the police. Following this, Blue Lives
Matter became a pro-police movement in the United States. It expanded
after the killings of American police officers. On December 20,
2014, in the wake of the killings of officers Rafael Ramos and Wenjian
Liu, a group of law enforcement officers formed Blue Lives Matter
to counter media reports that they perceived to be anti-police.
Blue Lives Matter is made up of active and retired law enforcement
officers. The current national spokesman for Blue Lives Matter
is retired Las Vegas Metropolitan Police Department Lieutenant Randy
Sutton. Originating in New York City in December 2014, Blue Lives
Matter NYC is an organization and current nationwide movement that
was created to help law enforcement officers and their families
during their times of need. Sergeant Joey Imperatrice, along with
Officers Chris Brinkley and Carlos Delgado, felt ’compelled to show
support for their brothers and sisters in blue’ and handed out bracelets
that stated ’Blue Lives Matter’. They decided to create an organization,
which became the non-profit Blue Lives Matter NYC. This organization’s
mission is to raise awareness and encourage public aid for the needs
of police officers, to help police officers assist one another,
and to provide a police officer’s family with comfort and support
during difficult times. This campaign is designed to raise both
awareness and money for families in need. In order to increase
nationwide awareness, over three hundred billboards have been posted
with the slogan ’Blue Lives Matter’. Many of these billboards are
also accompanied by the hashtag hashtag thankublu, which individuals
use to show their support for police officers. Blue Lives Matter
is a pro-police movement in the United States. It was started after
the killings of NYPD officers Rafael Ramos and Wenjian Liu in Brooklyn,
New York, on December 20, 2014, after they were ambushed in their
patrol car. Blue Lives Matter was formed in reaction to the Black
Lives Matter movement, which seeks to end police brutality against
the African American community.[/passage]

Step-by-step response generation process:
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Step 1: Extract key pieces of information relevant to the query
’Blue Lives Matter’ hashtag as a response to Beyonce’s halftime
performance speaking out against police brutality
[Blue Lives Matter or hashtag BlueLivesMatter] was created by suppor-
ters of the police
Blue Lives Matter became a pro-police movement in the United States
a group of law enforcement officers formed Blue Lives Matter to
counter media reports that they perceived to be anti-police
made up of active and retired law enforcement officers
help law enforcement officers and their families during their times
of need
raise awareness and encourage public aid for the needs of police
officers, to help police officers assist one another, and to provide
a police officer’s family with comfort and support as they go through
hard times raise both awareness and money for the families in need
over three hundred billboards have been posted with the slogan ’Blue
Lives Matter’
hashtag thankublu, a hashtag many individuals use to show their
support for police officers
It was started after the killings of NYPD officers Rafael Ramos
and Wenjian Liu in Brooklyn, New York, on December 20, 2014, after
they were ambushed in their patrol car
which seeks to end police brutality against the African American
community

Step 2: Group related pieces of information
Group A – Purpose & Support for Officers:
help law enforcement officers and their families during their times
of need
raise awareness and encourage public aid for the needs of police
officers, to help police officers assist one another, and to provide
a police officer’s family with comfort and support as they go through
hard times
raise both awareness and money for the families in need
Group B - Origin & Formation:
’Blue Lives Matter became a pro-police movement in the United States
a group of law enforcement officers formed Blue Lives Matter to
counter media reports that they perceived to be anti-police
made up of active and retired law enforcement officers
It was started after the killings of NYPD officers Rafael Ramos
and Wenjian Liu in Brooklyn, New York, on December 20, 2014, after
they were ambushed in their patrol car
which seeks to end police brutality against the African American
community
Group C– Broader Context & Media Reaction:
’Blue Lives Matter’ hashtag as a response to Beyonce’s halftime
performance speaking out against police brutality
[Blue Lives Matter or hashtag BlueLivesMatter] was created by suppor-
ters of the police
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hashtag thankublu, a hashtag many individuals use to show their
support for police officers
over three hundred billboards have been posted with the slogan ’Blue
Lives Matter’

Step 3: Rank groups based on relevance to the query
Group B – Origin & Formation (Most relevant)
Group A – Purpose & Support for Officers
Group C – Broader Context & Media Reaction

Step 4: Generate a coherent, concise response
Response: Blue Lives Matter was founded by active and retired law
enforcement officers following the targeted killings of NYPD officers
Rafael Ramos and Wenjian Liu on December 20, 2014. It emerged as
a pro-police movement aimed at countering what it perceived as anti-
police media narratives while supporting officers and their families
through fundraising and awareness campaigns. The movement also
engages in public outreach through billboards, social media hashtags
like hashtag thankublu, and nonprofit initiatives dedicated to aiding
law enforcement personnel in times of need.

NOW PERFORM THE TASK ON THE FOLLOWING INPUT



Bibliography

Adams, G., Fabbri, A., Ladhak, F., Lehman, E., and Elhadad, N. (2023). From
sparse to dense: GPT-4 summarization with chain of density prompting. In
Proceedings of the 4th New Frontiers in Summarization Workshop, ACL ’23,
pages 68–74.

Alaofi, M., Gallagher, L., Mckay, D., Saling, L. L., Sanderson, M., Scholer,
F., Spina, D., and White, R. W. (2022). Where do queries come from? In
Proceedings of the 45th International ACM SIGIR Conference on Research
and Development in Information Retrieval , SIGIR ’22, pages 2850–2862.

Aliannejadi, M., Zamani, H., Crestani, F., and Croft, W. B. (2019). Asking
clarifying questions in open-domain information-seeking conversations. In
Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval , SIGIR ’22, pages 475–484.

Allahbakhsh, M., Benatallah, B., Ignjatovic, A., Motahari-Nezhad, H. R.,
Bertino, E., and Dustdar, S. (2013). Quality control in crowdsourcing sys-
tems: Issues and directions. IEEE Internet Computing , 17(2), 76–81.

Allein, L., Augenstein, I., and Moens, M.-F. (2021). Time-aware evidence rank-
ing for fact-checking. Journal of Web Semantics, 71, 100663.

Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P.,
Suh, J., Iqbal, S., Bennett, P. N., Inkpen, K., Teevan, J., Kikin-Gil, R., and
Horvitz, E. (2019). Guidelines for human-AI interaction. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19,
pages 1–13.

Anand, A., Cavedon, L., Hagen, M., Joho, H., Sanderson, M., and Stein, B.
(2019). Conversational search (Dagstuhl seminar 19461). Dagstuhl Reports,
9(11).

172



BIBLIOGRAPHY 173

Anand, A., Cavedon, L., Hagen, M., Joho, H., Sanderson, M., and Stein, B.
(2021). Dagstuhl seminar 19461 on conversational search: seminar goals and
working group outcomes. SIGIR Forum, 54(1).

Anantha, R., Vakulenko, S., Tu, Z., Longpre, S., Pulman, S., and Chappidi,
S. (2021). Open-domain question answering goes conversational via ques-
tion rewriting. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT ’21, pages 520–534.

Armstrong, T. G., Moffat, A., Webber, W., and Zobel, J. (2009). Improvements
that don’t add up: ad-hoc retrieval results since 1998. In Proceedings of the
18th ACM conference on Information and knowledge management , CIKM
’09, pages 601–610.

Asai, A. and Choi, E. (2021). Challenges in information-seeking QA: Unan-
swerable questions and paragraph retrieval. In Proceedings of the 59th An-
nual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), ACL-IJNLP ’21, pages 1492–1504.

Azzopardi, L. (2021). Cognitive biases in search: A review and reflection of cog-
nitive biases in information retrieval. In Proceedings of the 2021 Conference
on Human Information Interaction and Retrieval , CHIIR ’21, pages 27–37.

Azzopardi, L., Dubiel, M., Halvey, M., and Dalton, J. (2018). Conceptualizing
agent-human interactions during the conversational search process. In 2nd In-
ternational ACM SIGIR Workshop Conference on Conversational Approaches
to IR, CAIR ’18.

Baeza-Yates, R. (2018). Bias on the web. Commun. ACM , 61(6), 54–61.

Baheti, A., Ritter, A., and Small, K. (2020). Fluent response generation for
conversational question answering. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, ACL ’20, pages 191–207.

Bai, Y., Miao, Y., Chen, L., Li, D., Ren, Y., Xie, H., Yang, C., and Cai, X.
(2024). Pistis-RAG: A scalable cascading framework towards trustworthy
retrieval-augmented generation.

Balog, K. and Kenter, T. (2019). Personal knowledge graphs: A research agenda.
In Proceedings of the 2019 ACM SIGIR International Conference on Theory
of Information Retrieval , ICTIR ’19, pages 217–220.

Balog, K., Metzler, D., and Qin, Z. (2025). Rankers, judges, and assistants: To-
wards understanding the interplay of llms in information retrieval evaluation.
arXiv , cs.IR/2503.19092.

Bates, M. J. (1989). The design of browsing and berrypicking techniques for
the online search interface. Online Review , 13(5), 407–424.



BIBLIOGRAPHY 174

Belkin, N. (1995). Cases, scripts, and information-seeking strategies: On the
design of interactive information retrieval systems. Expert Systems with Ap-
plications, 9(3), 379–395.

Belkin, N. J. (1980). Anomalous states of knowledge as a basis for information
retrieval. Canadian journal of information science, 5(1), 133–143.

Bernard, N., Kostric, I., Łajewska, W., Balog, K., Galusčáková, P., Setty, V.,
and Skjæveland, M. G. (2024). PKG API: A tool for personal knowledge
graph management. In Companion Proceedings of the ACM Web Conference
2024 , WWW ’24, pages 1051–1054.

Bhandari, M., Gour, P. N., Ashfaq, A., Liu, P., and Neubig, G. (2020). Re-
evaluating evaluation in text summarization. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing , EMNLP ’2020,
pages 9347–9359.

Bink, M., Zimmerman, S., and Elsweiler, D. (2022). Featured snippets and
their influence on users’ credibility judgements. In Proceedings of the 2022
Conference on Human Information Interaction & Retrieval , CHIIR ’22, pages
113–122.

Bohnet, B., Tran, V. Q., Verga, P., Aharoni, R., Andor, D., Soares, L. B.,
Ciaramita, M., Eisenstein, J., Ganchev, K., Herzig, J., Hui, K., Kwiatkowski,
T., Ma, J., Ni, J., Saralegui, L. S., Schuster, T., Cohen, W. W., Collins,
M., Das, D., Metzler, D., Petrov, S., and Webster, K. (2023). Attributed
question answering: Evaluation and modeling for attributed large language
models. arXiv , cs.CL/2212.08037.

Bolotova, V., Blinov, V., Zheng, Y., Croft, W. B., Scholer, F., and Sanderson, M.
(2020). Do people and neural nets pay attention to the same words: Studying
eye-tracking data for non-factoid QA evaluation. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management ,
CIKM ’20, pages 85–94.

Bolotova-Baranova, V., Blinov, V., Filippova, S., Scholer, F., and Sanderson,
M. (2023). WikiHowQA: A comprehensive benchmark for multi-document
non-factoid question answering. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
ACL ’23, pages 5291–5314.

Borlund, P. (2003). The concept of relevance in IR. Journal of the American
Society for Information Science and Technology , 54(10), 913–925.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015). A large
annotated corpus for learning natural language inference. In Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing ,
EMNLP ’15, pages 632–642.



BIBLIOGRAPHY 175

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss,
A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B.,
Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei,
D. (2020). Language models are few-shot learners. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS
’20.

Budzianowski, P., Wen, T.-H., Tseng, B.-H., Casanueva, I., Ultes, S., Ramadan,
O., and Gašić, M. (2018). MultiWOZ - a large-scale multi-domain Wizard-of-
Oz dataset for task-oriented dialogue modelling. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing , EMNLP
’18, pages 5016–5026.

Cambazoglu, B. B., Baranova, V., Scholer, F., Sanderson, M., Tavakoli, L.,
and Croft, B. (2021). Quantifying human-perceived answer utility in non-
factoid question answering. In Proceedings of the 2021 Conference on Human
Information Interaction and Retrieval , CHIIR ’21, pages 75–84.

Campos, D. F., Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Ma-
jumder, R., Deng, L., and Mitra, B. (2016). MS MARCO: A human generated
machine reading comprehension dataset. arXiv , cs.CL/1611.09268.

Campos, R., Dias, G., Jorge, A. M., and Jatowt, A. (2015). Survey of temporal
information retrieval and related applications. ACM Computing Surveys,
47(2), 1–41.

Cao, Z., Li, W., Li, S., Wei, F., and Li, Y. (2016). AttSum: Joint learning of
focusing and summarization with neural attention. In Proceedings of COL-
ING 2016, the 26th International Conference on Computational Linguistics,
COLING ’16, pages 547–556.

Cau, F. M., Hauptmann, H., Spano, L. D., and Tintarev, N. (2023). Supporting
high-uncertainty decisions through AI and logic-style explanations. In Pro-
ceedings of the 28th International Conference on Intelligent User Interfaces,
IUI ’23, pages 251–263.

Chang, C.-Y., Chen, N., Chiang, W.-T., Lee, C.-H., Tseng, Y.-H., Wang, C.-J.,
Chen, H.-H., and Tsai, M.-F. (2020). Query expansion with semantic-based
ellipsis reduction for conversational IR. In The Tweenty-Ninth Text REtrieval
Conference Proceedings, TREC ’20.

Chaudhry, A., Thiagarajan, S., and Gorur, D. (2024). Finetuning language mod-
els to emit linguistic expressions of uncertainty. arXiv , cs.CL/2409.12180.

Chen, H., Liu, X., Yin, D., and Tang, J. (2017). A survey on dialogue systems:
Recent advances and new frontiers. ACM SIGKDD Explorations Newsletter ,
19(2), 25–35.



BIBLIOGRAPHY 176

Chen, V., Liao, Q. V., Wortman Vaughan, J., and Bansal, G. (2023). Under-
standing the role of human intuition on reliance in human-AI decision-making
with explanations. Proceedings of the ACM on Human-Computer Interaction,
7(CSCW2).

Chen, X., Chen, F., Meng, F., Li, P., and Zhou, J. (2021). Unsupervised
knowledge selection for dialogue generation. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021 , ACL-IJNLP ’21, pages
1230–1244.

Cheng, H.-F., Wang, R., Zhang, Z., O’Connell, F., Gray, T., Harper, F. M., and
Zhu, H. (2019). Explaining decision-making algorithms through UI: Strategies
to help non-expert stakeholders. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, CHI ’19, pages 1–12.

Chiang, C.-W. and Yin, M. (2022). Exploring the effects of machine learning
literacy interventions on laypeople’s reliance on machine learning models. In
Proceeding of the 27th International Conference on Intelligent User Inter-
faces, IUI ’22, pages 148–161.

Chien, A. A., Lin, L., Nguyen, H., Rao, V., Sharma, T., and Wijayawardana,
R. (2023). Reducing the carbon impact of generative AI inference (today
and in 2035). In Proceedings of the 2nd Workshop on Sustainable Computer
Systems, HotCarbon ’23, pages 1–7.

Choi, E., He, H., Iyyer, M., Yatskar, M., Yih, W.-t., Choi, Y., Liang, P., and
Zettlemoyer, L. (2018). QuAC: Question answering in context. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing ,
EMNLP ’18.

Chomsky, N. (1957). Syntactic Structures. Martino Publishing.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A.,
Barham, P., Chung, H. W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K.,
Tsvyashchenko, S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer, N.,
Prabhakaran, V., Reif, E., Du, N., Hutchinson, B., Pope, R., Bradbury, J.,
Austin, J., Isard, M., Gur-Ari, G., Yin, P., Duke, T., Levskaya, A., Ghe-
mawat, S., Dev, S., Michalewski, H., Garcia, X., Misra, V., Robinson, K.,
Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph, B., Spiridonov,
A., Sepassi, R., Dohan, D., Agrawal, S., Omernick, M., Dai, A. M., Pillai,
T. S., Pellat, M., Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee,
K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O., Catasta, M., Wei,
J., Meier-Hellstern, K., Eck, D., Dean, J., Petrov, S., and Fiedel, N. (2023).
PaLM: scaling language modeling with pathways. The Journal of Machine
Learning Research, 24(1).

Christiano, P. F., Leike, J., Brown, T. B., Martic, M., Legg, S., and Amodei,
D. (2017). Deep reinforcement learning from human preferences. In Proceed-
ings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 4302–4310.



BIBLIOGRAPHY 177

Church, K. W. and Hanks, P. (1990). Word association norms, mutual infor-
mation, and lexicography. Computational Linguistics, 16(1), 22–29.

Clark, E., August, T., Serrano, S., Haduong, N., Gururangan, S., and Smith,
N. A. (2021). All that’s ‘human’ is not gold: Evaluating human evaluation of
generated text. In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), ACL-IJNLP ’21,
pages 7282–7296.

Cormack, G. V., Clarke, C. L. A., and Buettcher, S. (2009). Reciprocal rank
fusion outperforms condorcet and individual rank learning methods. In Pro-
ceedings of the 32nd international ACM SIGIR conference on Research and
development in information retrieval , SIGIR ’09, pages 758–759.

Costa, F., Ouyang, S., Dolog, P., and Lawlor, A. (2018). Automatic generation
of natural language explanations. In Proceedings of the 23rd International
Conference on Intelligent User Interfaces Companion, IUI ’18, pages 1–2.

Craswell, N., Mitra, B., Yilmaz, E., and Campos, D. (2020). Overview of
the TREC 2020 deep learning track. In The Twenty-Ninth Text REtrieval
Conference Proceedings, TREC ’20.

Cuconasu, F., Trappolini, G., Siciliano, F., Filice, S., Campagnano, C., Maarek,
Y., Tonellotto, N., and Silvestri, F. (2024). The power of noise: Redefining
retrieval for RAG systems. In Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in Information Retrieval ,
SIGIR ’24.

Culpepper, J. S., Diaz, F., and Smucker, M. D. (2018). Research frontiers in in-
formation retrieval: Report from the third strategic workshop on information
retrieval in Lorne (SWIRL 2018). SIGIR Forum, 52(1), 34–90.

Culpepper, J. S., Faggioli, G., Ferro, N., and Kurland, O. (2022). Topic diffi-
culty: Collection and query formulation effects. ACM Transactions on Infor-
mation Systems, 40(1), 1–36.

Dalton, J., Xiong, C., and Callan, J. (2019). TREC CAsT 2019: The con-
versational assistance track overview. In The Twenty-Eighth Text REtrieval
Conference Proceedings, TREC ’19.

Dalton, J., Xiong, C., and Callan, J. (2020). CAsT 2020: The conversational
assistance track overview. In The Twenty-Ninth Text REtrieval Conference
Proceedings, TREC ’20.

Dalton, J., Xiong, C., and Callan, J. (2021). TREC CAsT 2021: The conversa-
tional assistance track overview. In The Thirtieth Text REtrieval Conference
Proceedings, TREC ’21.



BIBLIOGRAPHY 178

Dang, H. T. and Lin, J. (2007). Different structures for evaluating answers to
complex questions: Pyramids won’t topple, and neither will human assessors.
In Proceedings of the 45th Annual Meeting of the Association of Computa-
tional Linguistics, ACL ’07, pages 768–775.

Daniel, F., Kucherbaev, P., Cappiello, C., Benatallah, B., and Allahbakhsh, M.
(2019). Quality control in crowdsourcing: A survey of quality attributes, as-
sessment techniques, and assurance actions. ACM Computing Surveys, 51(1),
1–40.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-
training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North, NAACL-HLT ’19, pages
4171–4186.

Dietz, L. (2024). A workbench for autograding retrieve/generate systems. In
Proceedings of the 47th International ACM SIGIR Conference on Research
and Development in Information Retrieval , SIGIR ’24, pages 1963–1972.

Dietz, L., Verma, M., Radlinski, F., and Craswell, N. (2018). TREC complex
answer retrieval overview. In The Twenty-Seventh Text REtrieval Conference
Proceedings, TREC ’18.

Draws, T., Tintarev, N., and Gadiraju, U. (2021a). Assessing viewpoint diver-
sity in search results using ranking fairness metrics. ACM SIGKDD Explo-
rations Newsletter , 23(1), 50–58.

Draws, T., Tintarev, N., Gadiraju, U., Bozzon, A., and Timmermans, B.
(2021b). This is not what we ordered: Exploring why biased search result
rankings affect user attitudes on debated topics. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval , SIGIR ’21.

Draws, T., Inel, O., Tintarev, N., Baden, C., and Timmermans, B. (2022).
Comprehensive viewpoint representations for a deeper understanding of user
interactions with debated topics. In Proceedings of the 2022 Conference on
Human Information Interaction & Retrieval , CHIIR ’22, pages 135–145.

Dubiel, M., Halvey, M., Azzopardi, L., Anderson, D., and Daronnat, S. (2020).
Conversational strategies: Impact on search performance in a goal-oriented
task. In ACM CHIIR 3rd Conversational Approaches to Information Retrieval
Workshop (CAIR), CAIR ’20.

Dumais, S., Jeffries, R., Russell, D. M., Tang, D., and Teevan, J. (2014). Un-
derstanding User Behavior Through Log Data and Analysis. Springer.

Dziri, N., Kamalloo, E., Mathewson, K., and Zaiane, O. (2019). Augmenting
neural response generation with context-aware topical attention. In Proceed-
ings of the First Workshop on NLP for Conversational AI , NLPConAI ’19,
pages 18–31.



BIBLIOGRAPHY 179

Eickhoff, C. (2018). Cognitive biases in crowdsourcing. In Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining ,
WSDM ’18, pages 162–170.

Ekstrand, M. D., Das, A., Burke, R., and Diaz, F. (2022). Fairness in infor-
mation access systems. Foundations and Trends® in Information Retrieval ,
16(1-2), 1–177.

Elgohary, A., Peskov, D., and Boyd-Graber, J. (2019). Can you unpack that?
learning to rewrite questions-in-context. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), EMNLP-IJCNLP ’19, pages 5918–5924.

Es, S., James, J., Espinosa Anke, L., and Schockaert, S. (2024). RAGAs: Au-
tomated evaluation of retrieval augmented generation. In Proceedings of the
18th Conference of the European Chapter of the Association for Computa-
tional Linguistics: System Demonstrations, EACL ’24, pages 150–158.

Fabbri, A. R., Kryściński, W., McCann, B., Xiong, C., Socher, R., and Radev,
D. (2021). SummEval: Re-evaluating summarization evaluation. Transactions
of the Association for Computational Linguistics, 9, 391–409.

Faggioli, G., Dietz, L., Clarke, C. L. A., Demartini, G., Hagen, M., Hauff, C.,
Kando, N., Kanoulas, E., Potthast, M., Stein, B., and Wachsmuth, H. (2023).
Perspectives on large language models for relevance judgment. In Proceedings
of the 2023 ACM SIGIR International Conference on Theory of Information
Retrieval , ICTIR ’23, pages 39–50.

Falke, T., Ribeiro, L. F. R., Utama, P. A., Dagan, I., and Gurevych, I. (2019).
Ranking generated summaries by correctness: An interesting but challenging
application for natural language inference. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, ACL ’19, pages
2214–2220.

Farzi, N. and Dietz, L. (2024a). EXAM++: LLM-based answerability metrics
for IR evaluation. In LLM4Eval: The First Workshop on Large Language
Models for Evaluation in Information Retrieval , SIGIR ’24.

Farzi, N. and Dietz, L. (2024b). TREMA-UNH at TREC: RAG systems and
RUBRIC-style evaluation. In The Thirty-Third Text REtrieval Conference
Proceedings, TREC ’24.

Ferreira, R., Leite, M., Semedo, D., and Magalhaes, J. (2022). Open-domain
conversational search assistants: the transformer is all you need. Information
Retrieval , 25(2), 123–148.

Firth, J. R. (1957). A synopsis of linguistic theory 1930-1955. Studies in Lin-
guistic Analysis, Special Volume/Blackwell , (1952-59), 1–32.



BIBLIOGRAPHY 180

Fisher, R. A. (1992). Statistical Methods for Research Workers. Breakthroughs
in Statistics: Methodology and Distribution. Springer New York.

Fröbe, M., Gienapp, L., Scells, H., Schmidt, E. O., Wiegmann, M., Potthast,
M., and Hagen, M. (2024). Webis at TREC 2024: Biomedical generative
retrieval, retrieval-augmented generation, and tip-of-the-tongue tracks. In
The Thirty-Third Text REtrieval Conference Proceedings, TREC ’24.

Gabburo, M., Jedema, N. P., Garg, S., Ribeiro, L. F. R., and Moschitti, A.
(2024). Measuring retrieval complexity in question answering systems. In
Findings of the Association for Computational Linguistics: ACL 2024 , ACL
’24, pages 14636–14650.

Gadiraju, U., Demartini, G., Kawase, R., and Dietze, S. (2015). Human beyond
the machine: Challenges and opportunities of microtask crowdsourcing. IEEE
Intelligent Systems, 30(4), 81–85.

Gao, J., Galley, M., and Li, L. (2019). Neural approaches to conversational AI.
Found. Trends Inf. Retr., 13(2-3), 127–298.

Gao, J., Xiong, C., Bennett, P., and Craswell, N. (2023a). Neural Approaches
to Conversational Information Retrieval . Springer Cham.

Gao, R. and Shah, C. (2020). Toward creating a fairer ranking in search engine
results. Information Processing & Management , 57(1), 102–138.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., Wang,
M., and Wang, H. (2023b). Retrieval-augmented generation for large language
models: A survey. cs.CL/2312.10997.

Gemmell, C. and Dalton, J. (2020). Glasgow representation and information
learning lab (GRILL) at the conversational assistance track 2020. In The
Twenty-Ninth Text REtrieval Conference Proceedings, TREC ’20.

Gerritse, E. J., Hasibi, F., and de Vries, A. P. (2020). Bias in conversational
search: The double-edged sword of the personalized knowledge graph. In
Proceedings of the 2020 ACM SIGIR on International Conference on Theory
of Information Retrieval , ICTIR ’20, pages 133–136.

Gienapp, L., Scells, H., Deckers, N., Bevendorff, J., Wang, S., Kiesel, J., Syed,
S., Fröbe, M., Zuccon, G., Stein, B., Hagen, M., and Potthast, M. (2024).
Evaluating generative ad hoc information retrieval. In Proceedings of the
47th International ACM SIGIR Conference on Research and Development in
Information Retrieval , SIGIR ’24, pages 1916–1929.

Godin, F., Kumar, A., and Mittal, A. (2019). Learning when not to answer: a
ternary reward structure for reinforcement learning based question answering.
In North American Chapter of the Association for Computational Linguistics,
NAACL ’19, pages 122–129.



BIBLIOGRAPHY 181

Gospodinov, M., MacAvaney, S., and Macdonald, C. (2023). Doc2Query–:
When less is more. In Advances in Information Retrieval: 45th European
Conference on Information Retrieval , ECIR ’23, pages 414–422.

Goyal, T. and Durrett, G. (2021). Annotating and modeling fine-grained factu-
ality in summarization. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT ’21, pages 1449–1462.

Goyal, T., Li, J. J., and Durrett, G. (2023). News summarization and evaluation
in the era of GPT-3. arXiv , cs.CL/2209.12356.

Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based
TF-IDF procedure. arXiv , cs.CL/2203.05794.

Guo, J., Fan, Y., Ai, Q., and Croft, W. B. (2016). A deep relevance matching
model for ad-hoc retrieval. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management , CIKM ’16, pages
55–64.

Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M.-W. (2020). REALM:
retrieval-augmented language model pre-training. In Proceedings of the 37th
International Conference on Machine Learning , volume 119 of ICML ’20 ,
pages 3929–3938.

Harris, Z. S. (1954). Distributional Structure. Papers on Syntax . Springer.

He, G., Buijsman, S., and Gadiraju, U. (2023a). How stated accuracy of an AI
system and analogies to explain accuracy affect human reliance on the system.
Proceedings of the ACM on Human-Computer Interaction, 7(CSCW2), 1–29.

He, G., Kuiper, L., and Gadiraju, U. (2023b). Knowing about knowing: An
illusion of human competence can hinder appropriate reliance on AI systems.
In Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems, CHI ’23, pages 1–18.

Helberger, N., Karppinen, K., and D’Acunto, L. (2018). Exposure diversity as
a design principle for recommender systems. Information, Communication &
Society , 21(2), 191–207.

Hersh, W., Turpin, A., Price, S., Chan, B., Kramer, D., Sacherek, L., and Olson,
D. (2000). Do batch and user evaluations give the same results? In Proceedings
of the 23rd annual international ACM SIGIR conference on Research and
development in information retrieval , SIGIR ’00, pages 17–24.

Hewitt, J. and Manning, C. D. (2019). A structural probe for finding syntax
in word representations. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), NAACL-HLT
’19, pages 4129–4138.



BIBLIOGRAPHY 182

Horvitz, E. (1999). Principles of mixed-initiative user interfaces. In Proceedings
of the SIGCHI conference on Human Factors in Computing Systems, CHI
’99, pages 159–166.

Hu, M., Wei, F., Peng, Y., Huang, Z., Yang, N., and Li, D. (2019). Read
+ verify: Machine reading comprehension with unanswerable questions. In
Proceedings of the AAAI Conference on Artificial Intelligence, AAAI ’19,
pages 6529–6537.

Huang, K., Tang, Y., Huang, J., He, X., and Zhou, B. (2019a). Relation module
for non-answerable predictions on reading comprehension. In Proceedings of
the 23rd Conference on Computational Natural Language Learning , CoNLL
’19, pages 747–756.

Huang, K., Tang, Y., Huang, J., He, X., and Zhou, B. (2019b). Relation module
for non-answerable predictions on reading comprehension. In Proceedings of
the 23rd Conference on Computational Natural Language Learning , CoNLL
’19, pages 747–756.

Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., and Heck, L. (2013). Learn-
ing deep structured semantic models for web search using clickthrough data.
In Proceedings of the 22nd ACM international conference on Information &
Knowledge Management , CIKM ’13, pages 2333–2338.

Huang, Y. and Huang, J. (2024). A survey on retrieval-augmented text gener-
ation for large language models. arXiv , cs.IR/2404.10981.

Iskender, N., Schaefer, R., Polzehl, T., and Möller, S. (2021). Argument mining
in tweets: Comparing crowd and expert annotations for automated claim
and evidence detection. In Natural Language Processing and Information
Systems: 26th International Conference on Applications of Natural Language
to Information Systems, NLDB ’21, pages 275–288.

Izacard, G. and Grave, E. (2021). Leveraging passage retrieval with genera-
tive models for open domain question answering. In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, EACL ’21, pages 874–880.

Izacard, G., Lewis, P., Lomeli, M., Hosseini, L., Petroni, F., Schick, T., Dwivedi-
Yu, J., Joulin, A., and Riedel, S. (2023). Atlas: Few-shot learning with
retrieval augmented language models. Journal of Machine Learning Research,
(24), 1–43.

Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR
techniques. ACM Transactions on Information Systems, 20(4), 422–446.

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y. J.,
Madotto, A., and Fung, P. (2023). Survey of hallucination in natural language
generation. ACM Computing Surveys, 55(12), 1–38.



BIBLIOGRAPHY 183

Jiang, H., Wu, Q., Luo, X., Li, D., Lin, C.-Y., Yang, Y., and Qiu, L. (2024).
LongLLMLingua: Accelerating and enhancing LLMs in long context scenarios
via prompt compression. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), ACL
’24, pages 1658–1677.

Jiang, Z., Dou, Z., Zhao, W. X., Nie, J.-Y., Yue, M., and Wen, J.-R. (2018).
Supervised search result diversification via subtopic attention. IEEE Trans-
actions on Knowledge and Data Engineering , 30(10), 1971–1984.

Ju, J.-H., Yeh, C.-T., Lin, C.-W., Tsao, C.-Y., Ding, J.-E., Wang, C.-J., and
Tsai, M.-F. (2021). An exploration study of multi-stage conversational passage
retrieval: Paraphrase query expansion and multi-view point-wise ranking. In
The Thirtieth Text REtrieval Conference Proceedings, TREC ’21.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R.,
Gray, S., Radford, A., Wu, J., and Amodei, D. (2020). Scaling laws for neural
language models. arXiv , cs.LG/2001.08361.

Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D.,
and Yih, W.-t. (2020). Dense passage retrieval for open-domain question
answering. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing , EMNLP ’20, pages 6769–6781.

Kazai, G., Kamps, J., and Milic-Frayling, N. (2011). Worker types and person-
ality traits in crowdsourcing relevance labels. In Proceedings of the 20th ACM
international conference on Information and knowledge management , CIKM
’11, pages 1941–1944.

Kazai, G., Mitra, B., Dong, A., Craswell, N., and Yang, L. (2022). Less is
less: When are snippets insufficient for human vs machine relevance estima-
tion? In Advances in Information Retrieval: 44th European Conference on
IR Research, ECIR ’22, pages 153–162.

Kekäläinen, J. and Järvelin, K. (2002). Using graded relevance assessments in
IR evaluation. Journal of the American Society for Information Science and
Technology , 53(13), 1120–1129.

Kelly, D. (2007). Methods for evaluating interactive information retrieval sys-
tems with users. Foundations and Trends® in Information Retrieval , 3(1—
2), 1–224.

Kim, Y. and Allan, J. (2019). Unsupervised explainable controversy detection
from online news. In Advances in Information Retrieval: 41th European Con-
ference on IR Research, ECIR ’19, pages 836–843.

Koch, T. K., Frischlich, L., and Lermer, E. (2023). Effects of fact-checking warn-
ing labels and social endorsement cues on climate change fake news credibility
and engagement on social media. Journal of Applied Social Psychology , 53(6),
495–507.



BIBLIOGRAPHY 184

Kocielnik, R., Amershi, S., and Bennett, P. N. (2019). Will you accept an
imperfect AI? exploring designs for adjusting end-user expectations of AI
systems. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, CHI ’19, pages 1–14.

Koopman, B. and Zuccon, G. (2023). Dr ChatGPT tell me what i want to hear:
How different prompts impact health answer correctness. In Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing ,
EMNLP ’23, pages 15012–15022.

Kostric, I., Balog, K., Aresvik, T. A., Bernard, N., Dørheim, E. T., Hantula, P.,
Havn-Sørensen, S., Henriksen, R., Hosseini, H., Khlybova, E., Lajewska, W.,
Mosand, S. E., and Orujova, N. (2022). DAGFiNN: A conversational confer-
ence assistant. In Proceedings of the 16th ACM Conference on Recommender
Systems, RecSys ’22, pages 628–631.

Krishna, K., Roy, A., and Iyyer, M. (2021). Hurdles to progress in long-form
question answering. In Proceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT ’21, pages 4940–4957.

Kryscinski, W., McCann, B., Xiong, C., and Socher, R. (2020). Evaluating
the factual consistency of abstractive text summarization. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing ,
EMNLP ’20, pages 9332–9346.

Kumar, V. and Callan, J. (2020). Making information seeking easier: An im-
proved pipeline for conversational search. In Findings of the Association for
Computational Linguistics: EMNLP 2020 , EMNLP ’20, pages 3971–3980.

Kurland, O. and Culpepper, J. S. (2018). Fusion in information retrieval: SIGIR
2018 half-day tutorial. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval , SIGIR ’18, pages 1383–
1386.

Ladhak, F., Durmus, E., He, H., Cardie, C., and McKeown, K. (2022). Faith-
ful or extractive? on mitigating the faithfulness-abstractiveness trade-off in
abstractive summarization. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), ACL
’22, pages 1410–1421.

Lafferty, J. and Zhai, C. (2003). Probabilistic Relevance Models Based on Doc-
ument and Query Generation. Language Modeling for Information Retrieval .
Springer.

Łajewska, W. (2024). Grounded and transparent response generation for con-
versational information-seeking systems. In Proceedings of the 17th ACM In-
ternational Conference on Web Search and Data Mining , WSDM ’24, pages
1142–1144.



BIBLIOGRAPHY 185

Łajewska, W. and Balog, K. (2023a). From baseline to top performer: A repro-
ducibility study of approaches at the TREC 2021 conversational assistance
track. In Advances in Information Retrieval: 45th European Conference on
Information Retrieval , ECIR ’23, page 177–191.

Łajewska, W. and Balog, K. (2023b). Towards filling the gap in conversa-
tional search: From passage retrieval to conversational response generation.
In Proceedings of the 32nd ACM International Conference on Information
and Knowledge Management , CIKM ’23, pages 5326–5330.

Łajewska, W. and Balog, K. (2024a). Towards reliable and factual response
generation: Detecting unanswerable questions in information-seeking conver-
sations. In Advances in Information Retrieval: 46th European Conference on
Information Retrieval , ECIR ’24, page 336–344.

Łajewska, W. and Balog, K. (2024b). The University of Stavanger (IAI) at the
TREC 2024 retrieval-augmented generation track. In The Thirty-Third Text
REtrieval Conference Proceedings, TREC ’24.

Łajewska, W. and Balog, K. (2025). GINGER: Grounded information nugget-
based generation of responses. In Proceedings of the 48th International ACM
SIGIR Conference on Research and Development in Information Retrieval ,
SIGIR ’25.

Łajewska, W., Bernard, N., Kostric, I., Sekulic, I., and Balog, K. (2022). The
University of Stavanger (IAI) at the TREC 2022 conversational assistance
track. In The Thirty-First Text REtrieval Conference Proceedings, TREC
’22.

Łajewska, W., Balog, K., Spina, D., and Trippas, J. (2024a). Can users detect
biases or factual errors in generated responses in conversational information-
seeking? In Proceedings of the 2024 Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval in the Asia
Pacific Region, SIGIR-AP ’24, pages 92–102.

Łajewska, W., Spina, D., Trippas, J., and Balog, K. (2024b). Explainability for
transparent conversational information-seeking. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval , SIGIR ’24, pages 1040–1050.

Łajewska, W., Hardalov, M., Aina, L., John, N. A., Su, H., and Màrquez, L.
(2025). Understanding and improving information preservation in prompt
compression for LLMs. arXiv , cs.CL/2503.19114.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable
predictive uncertainty estimation using deep ensembles. In Proceedings of
the 31st International Conference on Neural Information Processing Systems,
NIPS’17, page 6405–6416.



BIBLIOGRAPHY 186

Lavrenko, V. and Croft, W. B. (2001). Relevance based language models. In
Proceedings of the 24th annual international ACM SIGIR conference on Re-
search and development in information retrieval , SIGIR ’01, pages 120–127.

Le, J., Edmonds, A., Hester, V., and Biewald, L. (2010). Ensuring quality in
crowdsourced search relevance evaluation: The effects of training question
distribution. In Proceedings of the SIGIR 2010 Workshop on Crowdsourcing
for Search Evaluation, SIGIR ’10.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küt-
tler, H., Lewis, M., Yih, W.-t., Rocktäschel, T., Riedel, S., and Kiela, D.
(2020). Retrieval-augmented generation for knowledge-intensive NLP tasks.
In Proceedings of the 34th International Conference on Neural Information
Processing Systems, NIPS ’20, pages 9459–9474.

Liao, J., Zhao, X., Zheng, J., Li, X., Cai, F., and Tang, J. (2022). PTAU:
Prompt tuning for attributing unanswerable questions. In Proceedings of the
45th International ACM SIGIR Conference on Research and Development in
Information Retrieval , SIGIR ’22, pages 1219–1229.

Liao, Q. and Sundar, S. S. (2022). Designing for responsible trust in AI systems:
A communication perspective. In Proceedings of the 2022 ACM Conference
on Fairness, Accountability, and Transparency , FAccT ’22, pages 1257–1268.

Liao, Q. V. and Vaughan, J. W. (2024). AI transparency in the age of LLMs:
A human-centered research roadmap. Harvard Data Science Review , (5).

Lin, C.-Y. (2004). ROUGE: A package for automatic evaluation of summaries.
In Proceedings of Workshop on Text Summarization Branches Out, Post-
Conference Workshop of ACL 2004 , ACL ’04, pages 74–81.

Lin, S.-C., Yang, J.-H., Nogueira, R., Tsai, M.-F., Wang, C.-J., and Lin, J.
(2021). Multi-stage conversational passage retrieval: An approach to fusing
term importance estimation and neural query rewriting. ACM Transactions
on Information Systems, 39(4).

Lippe, P., Ren, P., Haned, H., Voorn, B., and de Rijke, M. (2020). Diversifying
task-oriented dialogue response generation with prototype guided paraphras-
ing. arXiv , cs.CL/2008.03391.

Liu, J. (2023). Toward a two-sided fairness framework in search and recom-
mendation. In Proceedings of the 2023 Conference on Human Information
Interaction and Retrieval , CHIIR ’23, pages 236–246.

Liu, N., Zhang, T., and Liang, P. (2023a). Evaluating verifiability in generative
search engines. In Findings of the Association for Computational Linguistics:
EMNLP 2023 , EMNLP ’23, pages 7001–7025.



BIBLIOGRAPHY 187

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua, M., Petroni, F., and
Liang, P. (2024). Lost in the middle: How language models use long contexts.
Transactions of the Association for Computational Linguistics, 12, 157–173.

Liu, T.-Y. (2010). Learning to rank for information retrieval. In Proceedings of
the 33rd international ACM SIGIR conference on Research and development
in information retrieval , SIGIR ’10, page 904.

Liu, Y., Fabbri, A., Liu, P., Zhao, Y., Nan, L., Han, R., Han, S., Joty, S.,
Wu, C.-S., Xiong, C., and Radev, D. (2023b). Revisiting the gold standard:
Grounding summarization evaluation with robust human evaluation. In Pro-
ceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL ’23, pages 4140–4170.

Lu, Z. and Yin, M. (2021). Human reliance on machine learning models when
performance feedback is limited: Heuristics and risks. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems, CHI ’21.

Luan, Y., Eisenstein, J., Toutanova, K., and Collins, M. (2021). Sparse, dense,
and attentional representations for text retrieval. Transactions of the Asso-
ciation for Computational Linguistics, 9.

MacAvaney, S. and Soldaini, L. (2023). One-shot labeling for automatic rele-
vance estimation. In Proceedings of the 46th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval , SIGIR ’23,
pages 2230–2235.

MacCartney, B. and Manning, C. D. (2008). Modeling semantic containment
and exclusion in natural language inference. In Proceedings of the 22nd In-
ternational Conference on Computational Linguistics, COLING ’08, pages
521–528.

Marchionini, G. (2006). Exploratory search: from finding to understanding.
Communications of the ACM , 49(4), 41–46.

McDonald, R., Brokos, G., and Androutsopoulos, I. (2018). Deep relevance
ranking using enhanced document-query interactions. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing ,
EMNLP ’18, pages 1849–1860.

Mele, I., Muntean, C. I., Nardini, F. M., Perego, R., Tonellotto, N., and Frieder,
O. (2020). Topic propagation in conversational search. In Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval , SIGIR ’20, pages 2057–2060.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation
of word representations in vector space. cs.CL/1301.3781.



BIBLIOGRAPHY 188

Mombaerts, L., Ding, T., Banerjee, A., Felice, F., Taws, J., and Borogovac,
T. (2024). Meta knowledge for retrieval augmented large language models.
cs.IR/2408.09017.

Monroe, D. (2018). Ai, explain yourself. Communications of the ACM , 61(11),
11–13.

Muhlgay, D., Ram, O., Magar, I., Levine, Y., Ratner, N., Belinkov, Y., Abend,
O., Leyton-Brown, K., Shashua, A., and Shoham, Y. (2023). Generating
benchmarks for factuality evaluation of language models. In Conference of the
European Chapter of the Association for Computational Linguistics, EACL
’23.

Nalisnick, E., Mitra, B., Craswell, N., and Caruana, R. (2016). Improving
document ranking with dual word embeddings. In Proceedings of the 25th
International Conference Companion on World Wide Web, WWW ’16, pages
83–84.

Nenkova, A. and Passonneau, R. (2004). Evaluating content selection in sum-
marization: The pyramid method. In Proceedings of the Human Language
Technology Conference of the North American Chapter of the Association for
Computational Linguistics, NAACL-HLT ’04, pages 145–152.

Nenkova, A., Passonneau, R., and McKeown, K. (2007). The pyramid method:
Incorporating human content selection variation in summarization evaluation.
ACM Transactions on Speech and Language Processing , 4(2).

Niehues, J. and Pham, N.-Q. (2019). Modeling confidence in sequence-to-
sequence models. In Proceedings of the 12th International Conference on
Natural Language Generation, INLG ’19, pages 575–583.

Nogueira, R. and Cho, K. (2019). Passage re-ranking with BERT. arXiv ,
cs.IR/1901.04085.

Nogueira, R., Yang, W., Cho, K., and Lin, J. J. (2019). Multi-stage document
ranking with BERT. arXiv , cs.IR/1910.14424.

Nogueira, R., Jiang, Z., Pradeep, R., and Lin, J. (2020). Document ranking with
a pretrained sequence-to-sequence model. In Findings of the Association for
Computational Linguistics: EMNLP 2020 , EMNLP ’20, pages 708–718.

Nunes, I. and Jannach, D. (2017). A systematic review and taxonomy of ex-
planations in decision support and recommender systems. User Modeling and
User-Adapted Interaction, 27(3-5).

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman,
F. L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., Avila, R.,
Babuschkin, I., Balaji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M.,
Belgum, J., Bello, I., Berdine, J., Bernadett-Shapiro, G., Berner, C., Bog-
donoff, L., Boiko, O., Boyd, M., Brakman, A.-L., Brockman, G., Brooks, T.,



BIBLIOGRAPHY 189

Brundage, M., Button, K., Cai, T., Campbell, R., Cann, A., Carey, B., Carl-
son, C., Carmichael, R., Chan, B., Chang, C., Chantzis, F., Chen, D., Chen,
S., Chen, R., Chen, J., Chen, M., Chess, B., Cho, C., Chu, C., Chung, H. W.,
Cummings, D., Currier, J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N.,
Deville, D., Dhar, A., Dohan, D., Dowling, S., Dunning, S., Ecoffet, A., Eleti,
A., Eloundou, T., Farhi, D., Fedus, L., Felix, N., Fishman, S. P., Forte, J.,
Fulford, I., Gao, L., Georges, E., Gibson, C., Goel, V., Gogineni, T., Goh,
G., Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray, S., Greene, R., Gross,
J., Gu, S. S., Guo, Y., Hallacy, C., Han, J., Harris, J., He, Y., Heaton, M.,
Heidecke, J., Hesse, C., Hickey, A., Hickey, W., Hoeschele, P., Houghton, B.,
Hsu, K., Hu, S., Hu, X., Huizinga, J., Jain, S., Jain, S., Jang, J., Jiang,
A., Jiang, R., Jin, H., Jin, D., Jomoto, S., Jonn, B., Jun, H., Kaftan, T.,
Kaiser, Ł., Kamali, A., Kanitscheider, I., Keskar, N. S., Khan, T., Kilpatrick,
L., Kim, J. W., Kim, C., Kim, Y., Kirchner, J. H., Kiros, J., Knight, M.,
Kokotajlo, D., Kondraciuk, Ł., Kondrich, A., Konstantinidis, A., Kosic, K.,
Krueger, G., Kuo, V., Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy,
D., Li, C. M., Lim, R., Lin, M., Lin, S., Litwin, M., Lopez, T., Lowe, R.,
Lue, P., Makanju, A., Malfacini, K., Manning, S., Markov, T., Markovski, Y.,
Martin, B., Mayer, K., Mayne, A., McGrew, B., McKinney, S. M., McLeavey,
C., McMillan, P., McNeil, J., Medina, D., Mehta, A., Menick, J., Metz, L.,
Mishchenko, A., Mishkin, P., Monaco, V., Morikawa, E., Mossing, D., Mu,
T., Murati, M., Murk, O., Mély, D., Nair, A., Nakano, R., Nayak, R., Nee-
lakantan, A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki, J., Paino,
A., Palermo, J., Pantuliano, A., Parascandolo, G., Parish, J., Parparita, E.,
Passos, A., Pavlov, M., Peng, A., Perelman, A., Peres, F. d. A. B., Petrov,
M., Pinto, H. P. d. O., Michael, Pokorny, Pokrass, M., Pong, V. H., Powell,
T., Power, A., Power, B., Proehl, E., Puri, R., Radford, A., Rae, J., Ramesh,
A., Raymond, C., Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez, H.,
Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S., Sastry, G., Schmidt, H.,
Schnurr, D., Schulman, J., Selsam, D., Sheppard, K., Sherbakov, T., Shieh, J.,
Shoker, S., Shyam, P., Sidor, S., Sigler, E., Simens, M., Sitkin, J., Slama, K.,
Sohl, I., Sokolowsky, B., Song, Y., Staudacher, N., Such, F. P., Summers, N.,
Sutskever, I., Tang, J., Tezak, N., Thompson, M. B., Tillet, P., Tootoonchian,
A., Tseng, E., Tuggle, P., Turley, N., Tworek, J., Uribe, J. F. C., Vallone, A.,
Vijayvergiya, A., Voss, C., Wainwright, C., Wang, J. J., Wang, A., Wang,
B., Ward, J., Wei, J., Weinmann, C. J., Welihinda, A., Welinder, P., Weng,
J., Weng, L., Wiethoff, M., Willner, D., Winter, C., Wolrich, S., Wong, H.,
Workman, L., Wu, S., Wu, J., Wu, M., Xiao, K., Xu, T., Yoo, S., Yu, K.,
Yuan, Q., Zaremba, W., Zellers, R., Zhang, C., Zhang, M., Zhao, S., Zheng,
T., Zhuang, J., Zhuk, W., and Zoph, B. (2024). GPT-4 technical report.
arXiv , cs.CL/2303.08774.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon,
J. V., Lakshminarayanan, B., and Snoek, J. (2019). Can you trust your
model’s uncertainty? evaluating predictive uncertainty under dataset shift.
In Proceedings of the 33rd International Conference on Neural Information



BIBLIOGRAPHY 190

Processing Systems, NIPS ’19.

Owoicho, P., Dalton, J., Aliannejadi, M., Azzopardi, L., Trippas, J. R., and
Vakulenko, S. (2022). TREC CAsT 2022: Going beyond user ask and system
retrieve with initiative and response generation. In The Thirty-First Text
REtrieval Conference Proceedings, TREC ’22.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2001). BLEU: a method
for automatic evaluation of machine translation. In Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics, ACL ’02, page
311.

Pathiyan Cherumanal, S., Tian, L., Abushaqra, F. M., Magnossão De Paula,
A. F., Ji, K., Ali, H., Hettiachchi, D., Trippas, J. R., Scholer, F., and Spina,
D. (2024). Walert: Putting conversational information seeking knowledge into
action by building and evaluating a large language model-powered chatbot.
In Proceedings of the 2024 ACM SIGIR Conference on Human Information
Interaction and Retrieval , CHIIR ’24, pages 401–405.

Pavlu, V., Rajput, S., Golbus, P. B., and Aslam, J. A. (2012). IR system
evaluation using nugget-based test collections. In Proceedings of the Fifth
ACM International Conference on Web Search and Data Mining , WSDM
’12, page 393–402.

Pei, J., Ren, P., Monz, C., and de Rijke, M. (2020). Retrospective and prospec-
tive mixture-of-generators for task-oriented dialogue response generation. In
European Conference on Artificial Intelligence, ECAI ’20, pages 2148–2155.

Peng, B., Galley, M., He, P., Brockett, C., Liden, L., Nouri, E., Yu, Z., Dolan,
B., and Gao, J. (2022). GODEL: Large-scale pre-training for goal-directed
dialog. arXiv , cs.CL/2206.11309.

Penha, G. and Hauff, C. (2021). On the calibration and uncertainty of neural
learning to rank models for conversational search. In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, EACL, pages 160–170.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and
Zettlemoyer, L. (2018). Deep contextualized word representations. In Pro-
ceedings of the 2018 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers), NAACL-HLT ’18, pages 2227–2237.

Petroni, F., Piktus, A., Fan, A., Lewis, P., Yazdani, M., De Cao, N., Thorne, J.,
Jernite, Y., Karpukhin, V., Maillard, J., Plachouras, V., Rocktäschel, T., and
Riedel, S. (2021). KILT: a benchmark for knowledge intensive language tasks.
In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2021, pages 2523–2544.



BIBLIOGRAPHY 191

Pirolli, P. and Card, S. (2015). The sensemaking process and leverage points
for analyst technology as identified through cognitive task analysis. In Pro-
ceedings of international conference on intelligence analysis, ICIA ’15, pages
2–4.

Ponte, J. M. and Croft, W. B. (1998). A language modeling approach to infor-
mation retrieval. In Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval , SIGIR ’98,
pages 275–281.

Pradeep, R., Nogueira, R., and Lin, J. (2021). The expando-mono-duo design
pattern for text ranking with pretrained sequence-to-sequence models. arXiv ,
cs.IR/2101.05667.

Pradeep, R., Sharifymoghaddam, S., and Lin, J. (2023). RankVicuna: Zero-
shot listwise document reranking with open-source large language models.
cs.IR/2309.15088.

Pradeep, R., Thakur, N., Upadhyay, S., Campos, D., Craswell, N., and Lin, J.
(2024). Initial nugget evaluation results for the TREC 2024 RAG track with
the AutoNuggetizer framework. arXiv , cs.IR/2411.09607.

Qin, Z., Jagerman, R., Hui, K., Zhuang, H., Wu, J., Yan, L., Shen, J., Liu, T.,
Liu, J., Metzler, D., Wang, X., and Bendersky, M. (2024). Large language
models are effective text rankers with pairwise ranking prompting. In Findings
of the Association for Computational Linguistics: NAACL 2024 , NAACL-
HLT ’24, pages 1504–1518.

Rackauckas, Z., Câmara, A., and Zavrel, J. (2024). Evaluating RAG-fusion with
RAGElo: an automated elo-based framework. arXiv , cs.IR/2406.14783.

Radensky, M., Séguin, J. A., Lim, J. S., Olson, K., and Geiger, R. (2023). “I
think you might like this”: Exploring effects of confidence signal patterns on
trust in and reliance on conversational recommender systems. In Proceedings
of the 2023 ACM Conference on Fairness, Accountability, and Transparency ,
FAccT ’23, pages 792–804.

Rader, E., Cotter, K., and Cho, J. (2018). Explanations as mechanisms for sup-
porting algorithmic transparency. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, CHI ’18, pages 1–13.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving
language understanding by generative pre-training. OpenAI .

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019).
Language models are unsupervised multitask learners. OpenAI .

Radlinski, F. and Craswell, N. (2017). A theoretical framework for conversa-
tional search. In Proceedings of the 2017 Conference on Conference Human
Information Interaction and Retrieval , CHIIR ’17, pages 117–126.



BIBLIOGRAPHY 192

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). SQuAD: 100,000+
questions for machine comprehension of text. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing , EMNLP
’16, pages 2383–2392.

Rajpurkar, P., Jia, R., and Liang, P. (2018). Know what you don’t know: Unan-
swerable questions for SQuAD. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers),
ACL ’18.

Ram, O., Levine, Y., Dalmedigos, I., Muhlgay, D., Shashua, A., Leyton-Brown,
K., and Shoham, Y. (2023). In-context retrieval-augmented language models.
Transactions of the Association for Computational Linguistics, 11, 1316–
1331.

Rashkin, H., Nikolaev, V., Lamm, M., Aroyo, L., and Collins, M. (2021). Mea-
suring attribution in natural language generation models. Computational
Linguistics, 49(4), 777–840.

Rechkemmer, A. and Yin, M. (2022). When confidence meets accuracy: Ex-
ploring the effects of multiple performance indicators on trust in machine
learning models. In Proceedings of the 2022 CHI Conference on Human Fac-
tors in Computing Systems, CHI ’22, pages 1–14.

Reddy, S., Chen, D., and Manning, C. D. (2019). CoQA: A conversational ques-
tion answering challenge. Transactions of the Association for Computational
Linguistics, 7, 249–266.

Ren, P., Chen, Z., Ren, Z., Kanoulas, E., Monz, C., and De Rijke, M. (2021).
Conversations with search engines: SERP-based conversational response gen-
eration. ACM Transactions on Information Systems, 39(4).

Ren, R., Wang, Y., Qu, Y., Zhao, W. X., Liu, J., Tian, H., Wu, H., Wen, J.-
R., and Wang, H. (2025). Investigating the factual knowledge boundary of
large language models with retrieval augmentation. In Proceedings of the 31st
International Conference on Computational Linguistics, COLING ’25, pages
3697–3715.

Robertson, S. (1977). The probability ranking principle in IR. Journal of
Documentation, 33(4), 294–304.

Robertson, S. and Zaragoza, H. (2009). The probabilistic relevance framework:
Bm25 and beyond. Foundations and Trends® in Information Retrieval , 3(4),
333–389.

Sakaeda, R. and Kawahara, D. (2022). Generate, evaluate, and select: A dia-
logue system with a response evaluator for diversity-aware response genera-
tion. In Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT ’22.



BIBLIOGRAPHY 193

Sakai, T. (2018). Laboratory Experiments in Information Retrieval . Springer
Singapore.

Sakai, T. (2023). SWAN: A generic framework for auditing textual conversa-
tional systems. arXiv , cs.IR/2305.08290.

Salton, G. (1968). Automatic Information Organization And Retrieval . McGraw
Hill Text.

Salton, G., Wong, A., and Yang, C. S. (1975). A vector space model for auto-
matic indexing. Communications of the ACM , 18(11), 613–620.

Samarinas, C., Dharawat, A., and Zamani, H. (2022). Revisiting open domain
query facet extraction and generation. In Proceedings of the 2022 ACM SIGIR
International Conference on Theory of Information Retrieval , ICTIR ’22,
pages 43–50.

Sanderson, M. (2010). Test collection based evaluation of information retrieval
systems. Foundations and Trends® in Information Retrieval , 4(4), 247–375.

Schneider, P., Afzal, A., Vladika, J., Braun, D., and Matthes, F. (2023). Investi-
gating conversational search behavior for domain exploration. In Advances in
Information Retrieval: 45th European Conference on Information Retrieval ,
ECIR ’23, pages 608–616.

Schuster, T., Lelkes, A. D., Sun, H., Gupta, J., Berant, J., Cohen, W. W., and
Metzler, D. (2023). SEMQA: Semi-extractive multi-source question answer-
ing. In Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technolo-
gies, volume 1 of NAACL-HLT ’23 , pages 1363–1381.

Sekulić, I., Aliannejadi, M., and Crestani, F. (2021). Towards facet-driven
generation of clarifying questions for conversational search. In Proceedings
of the 2021 ACM SIGIR International Conference on Theory of Information
Retrieval , ICTIR ’21, pages 167–175.

Sekulić, I., Aliannejadi, M., and Crestani, F. (2022). Exploiting document-based
features for clarification in conversational search. In Advances in Information
Retrieval: 44th European Conference on IR Research, ECIR ’22, pages 413–
427.

Sekulić, I., Łajewska, W., Balog, K., and Crestani, F. (2024). Estimating the
usefulness of clarifying questions and answers for conversational search. In Ad-
vances in Information Retrieval: 46th European Conference on Information
Retrieval , ECIR ’24, page 384–392.

Shah, C. and Bender, E. M. (2022). Situating search. In ACM SIGIR Conference
on Human Information Interaction and Retrieval , CHIIR ’22, pages 221–232.



BIBLIOGRAPHY 194

Shani, G., Rokach, L., Shapira, B., Hadash, S., and Tangi, M. (2013). Investigat-
ing confidence displays for top-N recommendations. Journal of the American
Society for Information Science and Technology , 64(12), 2548–2563.

Shapira, O., Gabay, D., Gao, Y., Ronen, H., Pasunuru, R., Bansal, M., Am-
sterdamer, Y., and Dagan, I. (2019). Crowdsourcing lightweight pyramids
for manual summary evaluation. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers),
NAACL-HLT ’19, pages 682–687.

Shi, W., Min, S., Yasunaga, M., Seo, M., James, R., Lewis, M., Zettlemoyer,
L., and Yih, W.-t. (2024). REPLUG: Retrieval-augmented black-box lan-
guage models. In Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), NAACL-HLT ’24, pages 8371–8384.

Shuster, K., Poff, S., Chen, M., Kiela, D., and Weston, J. (2021). Retrieval
augmentation reduces hallucination in conversation. In Findings of the As-
sociation for Computational Linguistics: EMNLP 2021 , EMNLP ’21, pages
3784–3803.

Skjæveland, M. G., Balog, K., Bernard, N., Łajewska, W., and Linjordet, T.
(2024). An ecosystem for personal knowledge graphs: A survey and research
roadmap. AI Open, 5, 55–69.

Steen, J. and Markert, K. (2021). How to evaluate a summarizer: Study design
and statistical analysis for manual linguistic quality evaluation. In Proceed-
ings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, EACL ’21, pages 1861–1875.

Subbiah, M., Zhang, S., Chilton, L. B., and McKeown, K. (2024). Reading
subtext: Evaluating large language models on short story summarization with
writers.

Sulem, E., Hay, J., and Roth, D. (2022). Yes, no or IDK: The challenge of
unanswerable yes/no questions. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT ’22, pages 1075–1085.

Sun, W., Yan, L., Ma, X., Wang, S., Ren, P., Chen, Z., Yin, D., and Ren, Z.
(2023). Is ChatGPT good at search? investigating large language models
as re-ranking agents. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing , EMNLP ’23, pages 14918–14937.

Sun, Z., Wang, X., Tay, Y., Yang, Y., and Zhou, D. (2022). Recitation-
augmented language models. In The Eleventh International Conference on
Learning Representations, ICLR ’23.



BIBLIOGRAPHY 195

Tan, C., Wei, F., Yang, N., Du, B., Lv, W., and Zhou, M. (2018). S-Net: From
answer extraction to answer synthesis for machine reading comprehension. In
Proceedings of the AAAI Conference on Artificial Intelligence, AAAI ’18.

Tang, L., Goyal, T., Fabbri, A., Laban, P., Xu, J., Yavuz, S., Kryscinski, W.,
Rousseau, J., and Durrett, G. (2023). Understanding factual errors in sum-
marization: Errors, summarizers, datasets, error detectors. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL ’23, pages 11626–11644.

Tang, X., Fabbri, A., Li, H., Mao, Z., Adams, G., Wang, B., Celikyilmaz, A.,
Mehdad, Y., and Radev, D. (2022). Investigating crowdsourcing protocols for
evaluating the factual consistency of summaries. In Proceedings of the 2022
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, NAACL-HLT ’22.

ter Hoeve, M., Kiseleva, J., and de Rijke, M. (2022). What makes a good
summary? reconsidering the focus of automatic summarization. In Proceed-
ings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT
’22, pages 46–75.

Tian, Z., Bi, W., Li, X., and Zhang, N. L. (2019). Learning to abstract for
memory-augmented conversational response generation. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, ACL
’19, pages 3816–3825.

Tigunova, A., Yates, A., Mirza, P., and Weikum, G. (2020). CHARM: Inferring
personal attributes from conversations. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing , EMNLP ’20, pages
5391–5404.

Toader, D.-C., Boca, G., Toader, R., Măcelaru, M., Toader, C., Ighian, D., and
Rădulescu, A. T. (2019). The effect of social presence and chatbot errors on
trust. Sustainability , 12(1), 256.

Tombros, A. and Sanderson, M. (1998). Advantages of query biased summaries
in information retrieval. In Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in information retrieval , SI-
GIR ’98, pages 2–10.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix,
T., Rozière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A.,
Grave, E., and Lample, G. (2023). LLaMA: Open and efficient foundation
language models. ArXiv .

Trippas, J. R., Spina, D., Cavedon, L., Joho, H., and Sanderson, M. (2018).
Informing the design of spoken conversational search: Perspective paper. In
Proceedings of the 2018 Conference on Human Information Interaction &
Retrieval , CHIIR ’18, pages 32–41.



BIBLIOGRAPHY 196

Trippas, J. R., Spina, D., Thomas, P., Sanderson, M., Joho, H., and Cavedon,
L. (2020). Towards a model for spoken conversational search. Information
Processing & Management , 57(2), 102–162.

Tsai, C.-H., You, Y., Gui, X., Kou, Y., and Carroll, J. M. (2021). Exploring
and promoting diagnostic transparency and explainability in online symptom
checkers. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, CHI ’21, pages 1–17.

Turney, P. D. (2005). Measuring semantic similarity by latent relational anal-
ysis. In Proceedings of the 19th international joint conference on Artificial
intelligence, IJCAI ’05, pages 1136–1141.

Turpin, A., Scholer, F., Mizzaro, S., and Maddalena, E. (2015). The bene-
fits of magnitude estimation relevance assessments for information retrieval
evaluation. In Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval , SIGIR ’15, pages
565–574.

Vakharia, D. and Lease, M. (2013). Beyond AMT: An analysis of crowd work
platforms. arXiv , cs.CY/1310.1672.

Vakulenko, S., Voskarides, N., Tu, Z., and Longpre, S. (2021a). A comparison of
question rewriting methods for conversational passage retrieval. In Advances
in Information Retrieval: 43rd European Conference on IR Research, ECIR
’21, pages 418–424.

Vakulenko, S., Voskarides, N., Tu, Z., and Longpre, S. (2021b). Leveraging query
resolution and reading comprehension for conversational passage retrieval. In
The Tweenty-Ninth Text REtrieval Conference Proceedings, TREC ’20.

Vakulenko, S., Longpre, S., Tu, Z., and Anantha, R. (2021c). Question rewriting
for conversational question answering. In WSDM ’21 .

van der Waa, J., Nieuwburg, E., Cremers, A., and Neerincx, M. (2021). Eval-
uating XAI: A comparison of rule-based and example-based explanations.
Artificial Intelligence, 291.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In Proceed-
ings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 6000–6010.

Voorhees, E. M. (1998). Variations in relevance judgments and the measurement
of retrieval effectiveness. In Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in information retrieval , SI-
GIR ’98, pages 315–323.

Voorhees, E. M. (2004). Overview of the TREC 2003 question answering track.
In The Twelfth Text Retrieval Conference Proceedings, TREC ’03.



BIBLIOGRAPHY 197

Voskarides, N., Li, D., Panteli, A., and Ren, P. (2019). ILPS at TREC 2019 con-
versational assistant track. In The Twenty-Eighth Text REtrieval Conference
Proceedings, TREC ’19.

Voskarides, N., Li, D., Ren, P., Kanoulas, E., and de Rijke, M. (2020). Query
resolution for conversational search with limited supervision. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development
in Information Retrieval , SIGIR ’20, pages 921–930.

Wang, X., Shou, L., Gong, M., Duan, N., and Jiang, D. (2020). No answer
is better than wrong answer: A reflection model for document level machine
reading comprehension. In Findings of the Association for Computational
Linguistics: EMNLP 2020 , EMNLP, pages 4141–4150.

Wang, Zhenduo, Tu, Yuancheng, Rosset, Corby, Craswell, Nick, Wu, Ming,
and Ai, Qingyao (2023). Zero-shot clarifying question generation for conver-
sational search. In Proceedings of the ACM Web Conference 2023 , WWW
’23.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E. H.,
Le, Q. V., and Zhou, D. (2022). Chain-of-thought prompting elicits reasoning
in large language models. In Proceedings of the 36th International Conference
on Neural Information Processing Systems, NIPS ’22, pages 24824–24837.

White, R. W. (2014). Belief dynamics in web search: Belief dynamics in web
search. Journal of the Association for Information Science and Technology ,
65(11), 2165–2178.

Williams, J. P. (2008). Emergent themes. The Sage encyclopedia of qualitative
research methods, 1, 248–249.

Wilson, T. (1981). On user studies and information needs. Journal of Docu-
mentation, 37(1), 3–15.

Wilson, T. D. (1999). Models in information behaviour research. Journal of
Documentation, 55(3), 249–270.

Xing, C., Wu, W., Wu, Y., Liu, J., Huang, Y., Zhou, M., and Ma, W.-Y.
(2017). Topic aware neural response generation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31 of AAAI ’17 .

Xiong, L., Xiong, C., Li, Y., Tang, K.-F., Liu, J., Bennett, P. N., Ahmed, J.,
and Overwijk, A. (2020). Approximate nearest neighbor negative contrastive
learning for dense text retrieval. arXiv , cs.IR/2007.00808.

Xu, F., Shi, W., and Choi, E. (2023). RECOMP: Improving retrieval-augmented
lms with compression and selective augmentation.

Xu, J., Xia, L., Lan, Y., Guo, J., and Cheng, X. (2017). Directly optimize
diversity evaluation measures: A new approach to search result diversification.
ACM Transactions on Intelligent Systems and Technology , 8(3), 1–26.



BIBLIOGRAPHY 198

Xu, Y. C. and Chen, Z. (2006). Relevance judgment: What do information users
consider beyond topicality? Journal of the American Society for Information
Science and Technology , 57(7), 961–973.

Yan, X., Clarke, C., and Arabzadeh, N. (2021). WaterlooClarke at the TREC
2021 conversational assistant track. In The Thirtieth Text REtrieval Confer-
ence Proceedings, TREC ’21.

Yang, H., Li, Z., Zhang, Y., Wang, J., Cheng, N., Li, M., and Xiao, J. (2023).
PRCA: Fitting black-box large language models for retrieval question an-
swering via pluggable reward-driven contextual adapter. In Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing ,
EMNLP ’23.

Yang, J.-H., Lin, S.-C., Wang, C.-J., Lin, J. J., and Tsai, M.-F. (2019). Query
and answer expansion from conversation history. In The Twenty-Eighth Text
REtrieval Conference Proceedings, TREC ’19.

Yang, W., Li, Y., Fang, M., and Chen, L. (2024). Enhancing temporal sensitivity
and reasoning for time-sensitive question answering.

Yates, A., Nogueira, R., and Lin, J. (2021). Pretrained transformers for text
ranking: BERT and beyond. In Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in Information Retrieval ,
SIGIR ’21, page 2666–2668.

Yilmaz, Z. A., Wang, S., and Lin, J. (2019). H2oloo at TREC 2019: Combining
sentence and document evidence in the deep learning track. In The Twenty-
Eighth Text REtrieval Conference Proceedings, TREC ’19.

Yoon, C., Lee, T., Hwang, H., Jeong, M., and Kang, J. (2024). CompAct:
Compressing retrieved documents actively for question answering. In Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing , EMNLP ’24, pages 21424–21439.

Yu, S., Liu, J., Yang, J., Xiong, C., Bennett, P., Gao, J., and Liu, Z. (2020).
Few-shot generative conversational query rewriting. In Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval , SIGIR ’20, pages 1933–1936.

Yu, S., Liu, Z., Xiong, C., Feng, T., and Liu, Z. (2021). Few-shot conversational
dense retrieval. In Proceedings of the 44th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval , SIGIR ’21,
pages 829–838.

Zamani, H., Dumais, S., Craswell, N., Bennett, P., and Lueck, G. (2020). Gen-
erating clarifying questions for information retrieval. In Proceedings of The
Web Conference 2020 , WWW ’20, pages 418–428.



BIBLIOGRAPHY 199

Zamani, H., Trippas, J. R., Dalton, J., and Radlinski, F. (2023). Conversational
information seeking. Foundations and Trends® in Information Retrieval ,
17(3-4), 244–456.

Zhai, C. and Massung, S. (2016). Text Data Management and Analysis: A
Practical Introduction to Information Retrieval and Text Mining . Association
for Computing Machinery and Morgan & Claypool.

Zhang, H., Zhang, R., Guo, J., de Rijke, M., Fan, Y., and Cheng, X. (2024).
Are large language models good at utility judgments? In Proceedings of the
47th International ACM SIGIR Conference on Research and Development in
Information Retrieval , SIGIR ’24, page 1941–1951.

Zhang, J., Zhao, Y., Saleh, M., and Liu, P. J. (2020a). PEGASUS: pre-training
with extracted gap-sentences for abstractive summarization. In Proceedings
of the 37th International Conference on Machine Learning , volume 119 of
ICML ’20 , pages 11328–11339.

Zhang, S., Dinan, E., Urbanek, J., Szlam, A., Kiela, D., and Weston, J. (2018a).
Personalizing dialogue agents: I have a dog, do you have pets too? In Pro-
ceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL ’18, pages 2204–2213.

Zhang, Y. and Chen, X. (2020). Explainable recommendation: A survey and
new perspectives. Foundations and Trends® in Information Retrieval , 14(1),
1–101.

Zhang, Y., Chen, X., Ai, Q., Yang, L., and Croft, W. B. (2018b). Towards
conversational search and recommendation: System ask, user respond. In
Proceedings of the 27th ACM International Conference on Information and
Knowledge Management , CIKM ’18, pages 177–186.

Zhang, Y., Sun, S., Galley, M., Chen, Y.-C., Brockett, C., Gao, X., Gao, J.,
Liu, J., and Dolan, B. (2020b). DIALOGPT : Large-scale generative pre-
training for conversational response generation. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, ACL ’20, pages 270–278.

Zhang, Y., Liao, Q. V., and Bellamy, R. K. E. (2020c). Effect of confidence and
explanation on accuracy and trust calibration in ai-assisted decision mak-
ing. In Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency , FAT ’20, pages 295–305.

Zhang, Z., Yang, J., and Zhao, H. (2021). Retrospective reader for machine
reading comprehension. In Proceedings of the AAAI Conference on Artificial
Intelligence, AAAI ’21, pages 14506–14514.

Zheng, Q., Tang, Y., Liu, Y., Liu, W., and Huang, Y. (2022). UX research on
conversational human-ai interaction: A literature review of the acm digital



BIBLIOGRAPHY 200

library. In Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems, CHI ’22, pages 1–24.

Zheng, X., Che, F., Wu, J., Zhang, S., Nie, S., Liu, K., and Tao, J. (2024). KS-
LLM: Knowledge selection of large language models with evidence document
for question answering. Clinical Orthopaedics and Related Research.

Zhong, L., Cao, J., Sheng, Q., Guo, J., and Wang, Z. (2020). Integrating seman-
tic and structural information with graph convolutional network for contro-
versy detection. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL ’20, pages 515–526.

Zhou, Q., Yang, N., Wei, F., Huang, S., Zhou, M., and Zhao, T. (2018). Neural
document summarization by jointly learning to score and select sentences. In
Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL ’18, pages 654–663.


